CSU-1110 RMQ with Shifts (单点更新+区间最小值 zkw线段树)
In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R) (L<=R), we report the minimum value among A[L], A[L+1], …, A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].
In this problem, the array A is no longer static: we need to support another operation shift(i1, i2, i3, …, ik) (i1 < i2 < ...< ik, k>1): we do a left “circular shift” of A[i1], A[i2], …, A[ik].
For example, if A={6, 2
, 4, 8
, 5
, 1, 4
}, then shift(2, 4, 5, 7) yields {6
, 8
, 4, 5, 4, 1, 2}. After that, shift(1,2) yields {8, 6, 4, 5, 4, 1, 2}.
Input
There will be only one test case, beginning with two integers n
, q
(1<=n
<=100,000, 1<=q
<=120,000), the number of integers in array A, and the number of operations. The next line contains n
positive integers not greater than 100,000, the initial elements in array A. Each of the next q
lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid. Warning: The dataset is large, better to use faster I/O methods.
Output
For each query, print the minimum value (rather than index) in the requested range.
Sample Input
7 5 6 2 4 8 5 1 4 query(3,7) shift(2,4,5,7) query(1,4) shift(1,2) query(2,2)
Sample Output
1 4 6
看题目的开始可以知道,是一个求区间最小值的问题,可以用线段树来解决,看了后半段,感觉是单点更新问题,但看了数据范围时,有点蒙了,普通的操作会超时吧。。。卡了一段时间没敢写,然后,然后,竟然过了。。。唉,没经验啊。。。
题意就是给出一段序列,有两种操作,第一种是区间查询最小值,第二种是shift,就是按照给出的位置的数据循环左移一位。
代码如下:
#include<iostream> #include<cstring> #include<sstream> #include<cstdio> using namespace std; const int N = 100000 + 5; const int INF = (1<<30); int T[N<<2],a[N],q[N],M,cnt; char ch[N]; void Build(int n){ int i; for(M=1;M<=n+1;M*=2); for(i=M+1;i<=M+n;i++) T[i]=a[cnt++]; for(i=M-1;i;i--) T[i]=min(T[i<<1],T[i<<1|1]); } void Updata(int n,int V){ for(T[n+=M]=V,n/=2;n;n/=2) T[n]=min(T[n<<1],T[n<<1|1]); } int Query(int s,int t){ int minc = INF; for(s=s+M-1,t=t+M+1;s^t^1;s/=2,t/=2){ if(~s&1) minc=min(minc,T[s^1]); if(t&1) minc=min(minc,T[t^1]); } return minc; } void Replace(char *ch,int &cur){ cur = 0; int tmp=0; int len = strlen(ch); for(int i=0;i<len;i++) if(isdigit(ch[i])){ tmp=tmp*10 + ch[i]-'0'; if(i+1==len||!isdigit(ch[i+1])){ q[cur++] = tmp; tmp = 0; } } } void solve_question(int m){ int cur; for(int i=0;i<m;i++){ scanf("%s",ch); if(ch[0]=='q'){ Replace(ch,cur); printf("%d\n",Query(q[0],q[1])); }else{ Replace(ch,cur); int t = a[q[0]]; for(int i=0;i<cur-1;i++) a[q[i]] = a[q[i+1]]; a[q[cur-1]] = t; for(int i=0;i<cur;i++) Updata(q[i],a[q[i]]); } } } int main(){ int n,m; scanf("%d %d",&n,&m); for(int i=1;i<=n;i++) scanf("%d",&a[i]); cnt = 1; Build(n); solve_question(m); }