V-Parenthesis 前缀+ZKW线段树或RMQ
Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions.
The i-th question is whether P remains balanced after p ai and p bi swapped. Note that questions are individual so that they have no affect on others.
Parenthesis sequence S is balanced if and only if:
1. S is empty;
2. or there exists balanced parenthesis sequence A,B such that S=AB;
3. or there exists balanced parenthesis sequence S' such that S=(S').
题意就是给出一个正确配对的括号序列,问交换两个括号以后是否依旧正确配对,一般括号配对都可以使用遇到左括号加一,遇到右括号减一的方法,中间过程中不能出现负值,否则配对失败,这道题也可以这样做,先求出前缀和,如:
编号: 1 2 3 4 5 6 7 8
( ( ( ) ) ) ( )
前缀: 1 2 3 2 1 0 1 0
有两种仍然可以配对的交换:1.当交换的两个括号相同时,2.ai是右括号,bi是左括号时,根据示例可以看出;
唯一一种可能发生不配对的交换:ai是左括号,bi是右括号;当有右括号加入ai位置时,从ai位置到bi-1位置的前缀和全部都要减2,所以ai到bi-1区间内最小值至少为2,这样就变成了查询区间最小值问题了,可以用线段树,也可以RMQ(代码待补);因为刚刚学习线段树,又刚好听说ZKW线段树代码比较精简,所以临时现去学习了一下,结果发现好多给的示例代码都是错的。。。这个版本可能也有错,但是AC了就好。。。哈哈哈哈哈哈哈哈哈嗝。。。。
zkw线段树:
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int N = 100000 + 5; const int INF = (1<<28); int sum[N],T[N<<2],cnt,M; char ch[N]; void Build(int n){ int i; for(M=1;M<=n+1;M*=2); for(i=1+M;i<=n+M;i++) T[i] = sum[cnt++]; for(i=M-1;i;i--) T[i]=min(T[i<<1],T[i<<1|1]); } void Update(int n,int V){ for(T[n+=M]=V,n/=2;n;n/=2) T[n]=min(T[n<<1],T[n<<1|1]); } int Query(int s,int t){ int minc=INF; for(s=s+M-1,t=t+M+1;s^t^1;s/=2,t/=2){ if(~s&1) minc=min(minc,T[s^1]); if(t&1) minc=min(minc,T[t^1]); } return minc; } int main(){ int n,q,a,b; while(scanf("%d %d",&n,&q)==2){ scanf("%s",ch+1); sum[0] = 0; for(int i=1;i<=n;i++){ if(ch[i]=='(') sum[i]=sum[i-1]+1; else sum[i]=sum[i-1]-1; } cnt = 1; Build(n); for(int i=0;i<q;i++){ scanf("%d %d",&a,&b); if(a > b) swap(a,b); if(ch[a]==ch[b] || (ch[a]==')'&&ch[b]=='(')){ printf("Yes\n"); continue; } int ret = Query(a,b-1); printf("%s\n",ret>=2?"Yes":"No"); } } return 0; }
RMQ:
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int N = 100000 + 5; const int INF = (1<<28); int sum[N],dp[N][32],cnt,n; char ch[N]; void RMQ_Init(){ memset(dp,0,sizeof(dp)); for(int i=0;i<n+1;i++) dp[i][0] = sum[i]; for(int j=1;(1<<j)<=n+1;j++) for(int i=0;i+(1<<j)-1 < n+1;i++) dp[i][j] = min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } int RMQ(int L,int R){ int k = 0; while((1<<(k+1))<=R-L+1) k++; return min(dp[L][k],dp[R-(1<<k)+1][k]); } int main(){ int q,a,b; while(scanf("%d %d",&n,&q)==2){ scanf("%s",ch+1); sum[0] = 0; for(int i=1;i<=n;i++){ if(ch[i]=='(') sum[i]=sum[i-1]+1; else sum[i]=sum[i-1]-1; } cnt = 1; RMQ_Init(); for(int i=0;i<q;i++){ scanf("%d %d",&a,&b); if(a > b) swap(a,b); if(ch[a]==ch[b] || (ch[a]==')'&&ch[b]=='(')){ printf("Yes\n"); continue; } int ret = RMQ(a,b-1); printf("%s\n",ret>=2?"Yes":"No"); } } return 0; }