V-Parenthesis 前缀+ZKW线段树或RMQ

Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions.
The i-th question is whether P remains balanced after p ai and p bi  swapped. Note that questions are individual so that they have no affect on others.
Parenthesis sequence S is balanced if and only if:
1. S is empty;
2. or there exists balanced parenthesis sequence A,B such that S=AB;
3. or there exists balanced parenthesis sequence S' such that S=(S').


题意就是给出一个正确配对的括号序列,问交换两个括号以后是否依旧正确配对,一般括号配对都可以使用遇到左括号加一,遇到右括号减一的方法,中间过程中不能出现负值,否则配对失败,这道题也可以这样做,先求出前缀和,如:

编号: 1    2   3  4   5   6    7   8

         (    (    (    )    )    )    (    )

前缀: 1   2    3  2   1   0     1  0

有两种仍然可以配对的交换:1.当交换的两个括号相同时,2.ai是右括号,bi是左括号时,根据示例可以看出;

唯一一种可能发生不配对的交换:ai是左括号,bi是右括号;当有右括号加入ai位置时,从ai位置到bi-1位置的前缀和全部都要减2,所以ai到bi-1区间内最小值至少为2,这样就变成了查询区间最小值问题了,可以用线段树,也可以RMQ(代码待补);因为刚刚学习线段树,又刚好听说ZKW线段树代码比较精简,所以临时现去学习了一下,结果发现好多给的示例代码都是错的。。。这个版本可能也有错,但是AC了就好。。。哈哈哈哈哈哈哈哈哈嗝。。。。

zkw线段树:

 

#include<iostream>
#include<cstring>
#include<cstdio>

using namespace std;

const int N = 100000 + 5;
const int INF = (1<<28);
int sum[N],T[N<<2],cnt,M;
char ch[N];

void Build(int n){
    int i;
    for(M=1;M<=n+1;M*=2);
    for(i=1+M;i<=n+M;i++) T[i] = sum[cnt++];
    for(i=M-1;i;i--) T[i]=min(T[i<<1],T[i<<1|1]);
}

void Update(int n,int V){
    for(T[n+=M]=V,n/=2;n;n/=2)
        T[n]=min(T[n<<1],T[n<<1|1]);
}

int Query(int s,int t){
    int minc=INF;
    for(s=s+M-1,t=t+M+1;s^t^1;s/=2,t/=2){
        if(~s&1) minc=min(minc,T[s^1]);
        if(t&1) minc=min(minc,T[t^1]);
    }
    return minc;
}
int main(){
    int n,q,a,b;
    while(scanf("%d %d",&n,&q)==2){
        scanf("%s",ch+1);
        sum[0] = 0;
        for(int i=1;i<=n;i++){
            if(ch[i]=='(') sum[i]=sum[i-1]+1;
            else sum[i]=sum[i-1]-1;
        }
        cnt = 1;
        Build(n);
        for(int i=0;i<q;i++){
            scanf("%d %d",&a,&b);
            if(a > b) swap(a,b);
            if(ch[a]==ch[b] || (ch[a]==')'&&ch[b]=='(')){ printf("Yes\n"); continue; }
            int ret = Query(a,b-1);
            printf("%s\n",ret>=2?"Yes":"No");
        }
    }
    return 0;
}

 

 


RMQ:

#include<iostream>
#include<cstring>
#include<cstdio>

using namespace std;

const int N = 100000 + 5;
const int INF = (1<<28);
int sum[N],dp[N][32],cnt,n;
char ch[N];
void RMQ_Init(){
    memset(dp,0,sizeof(dp));
    for(int i=0;i<n+1;i++) dp[i][0] = sum[i];
    for(int j=1;(1<<j)<=n+1;j++)
        for(int i=0;i+(1<<j)-1 < n+1;i++)
        dp[i][j] = min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int RMQ(int L,int R){
    int k = 0;
    while((1<<(k+1))<=R-L+1) k++;
    return min(dp[L][k],dp[R-(1<<k)+1][k]);
}
int main(){
    int q,a,b;
    while(scanf("%d %d",&n,&q)==2){
        scanf("%s",ch+1);
        sum[0] = 0;
        for(int i=1;i<=n;i++){
            if(ch[i]=='(') sum[i]=sum[i-1]+1;
            else sum[i]=sum[i-1]-1;
        }
        cnt = 1;
        RMQ_Init();
        for(int i=0;i<q;i++){
            scanf("%d %d",&a,&b);
            if(a > b) swap(a,b);
            if(ch[a]==ch[b] || (ch[a]==')'&&ch[b]=='(')){ printf("Yes\n"); continue; }
            int ret = RMQ(a,b-1);
            printf("%s\n",ret>=2?"Yes":"No");
        }
    }
    return 0;
}

 

 

 

 


 

posted @ 2017-08-10 10:03  Pretty9  阅读(213)  评论(0编辑  收藏  举报