反常积分例题

Instance 0

\[\begin{align} \int_{-\infty}^{+\infty}\frac{1}{1+x^{2}}dx=? \\ \\ \int_{-\infty}^{+\infty}\frac{1}{1+x^{2}}=\int_{-\infty}^{0}\frac{1}{1+x^{2}}dx+\int_{0}^{+\infty}\frac{1}{1+x^{2}}dx \\ \\ \\ \\ \int_{-\infty}^{0}\frac{1}{1+x^{2}}dx=\lim_{a\to\infty}\int_{a}^{0}\frac{1}{1+x^{2}}dx \\ \\ \lim_{a\to -\infty}\int_{a}^{0}\frac{1}{1+x^{2}}dx=\lim_{a\to-\infty}\left[\arctan{(x)}\right]_{a}^{0} \\ \\ \\ \\ \int_{0}^{+\infty}\frac{1}{1+x^{2}}dx=\lim_{b\to+\infty}\int_{0}^{b}\frac{1}{1tx^{2}}dx \\ \\ \lim_{b\to+\infty}\int_{0}^{b}\frac{1}{1+x^{2}}dx=\lim_{b\to+\infty}\left[\arctan{(x)}\right]_{0}^{b} \\ \\ \\ \\ \text{arctan}函数的值域为: (-\frac{\pi}{2},\frac{\pi}{2}) \\ \\ \therefore\lim_{a\to-\infty}\arctan(a)=-\frac{\pi}{2} \\ \\ \lim_{b\to+\infty}\arctan(b)=\frac{\pi}{2} \\ \\ 此外: \arctan(0)=0 \\ \\ [0-(-\frac{\pi}{2})]+[\frac{\pi}{2}-0]=\pi \\ \\ \Rightarrow\int_{-\infty}^{+\infty}\frac{1}{1+x^{2}}dx=\pi \end{align} \]


posted @ 2024-07-16 22:27  Preparing  阅读(44)  评论(0编辑  收藏  举报