定积分之分部积分法

brief

设函数 \(u=u(x)\)\(q=q(x)\)\([a,b]\)上分别具有连续的导数: \(u'(x)\)\(q'(x)\) , 则有分部定积分公式:

\[\int_{a}^{b} udq=[uq]_{a}^{b}-\int_{a}^{b} qdu \]


instance 0

\[\begin{align} \int_{0}^{\frac{\pi}{2}} x \cos (x) d x=? \\ \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} x(\sin x)^{\prime} d x \Rightarrow \int_{0}^{\frac{\pi}{2}} x d(\sin x) \\ \\ \Rightarrow \left[x\sin x\right]_{0}^{\frac{\pi}{2}} -\int_{0}^{\frac{\pi}{2}}\sin xdx \\ \\ {[x \sin (x)]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2} \cdot \sin \left(\frac{\pi}{2}\right)-0=\frac{\pi}{2}} \\ \\ \int_{0}^{\frac{\pi}{2}}\sin x d x=[-\cos (x)]_{0}^{\frac{\pi}{2}} \\ \\ -\cos \left(\frac{\pi}{2}\right)=0, \quad -\cos (0)=-1 \\ \\ \Rightarrow [-\cos (x)]_{0}^{\frac{\pi}{2}}=0-(-1)=1 \\ \\ \Rightarrow\frac{\pi}{2}-1 \end{align} \]


instance 1

\[\begin{eqnarray} \int_{0}^{1}e^{\sqrt{x}}dx=? \\ \\ 设: \sqrt{x}=t, \enspace x=t^{2} \\ \\ \int_{0}^{1} e^{t}d(t^{2}) \\ \\ d(t^{2})=dt\cdot(t^{2})^{\prime}=dt\cdot2t \\ \\ \int_{0}^{1} e^{t}2tdt=2\int_{0}^{1} e^{t}tdt \\ \\ \Rightarrow2\int_{0}^{1}\left(e^{t}\right)^{\prime}tdt=2\int_{0}^{1}td\left(e^{t}\right) \\ \\ =2\left[te^{t}\right]_{0}^{1}-2\int_{0}^{1}e^{t}dt \\ \\ 2\left[te^{t}\right]_{0}^{1} =2\left[\sqrt{x}e^{\sqrt{x}}\right]_{0}^{1}=2\sqrt{1}e^{\sqrt{1}}-0=2e \\ \\ \\ \\ {2\int_{0}^{1}e^{t}dt=2\left[e^{t}\right]_{0}^{1} =2\left[e^{\sqrt{x}}\right]_{0}^{1}} \\ \\ 2\left[e^{\sqrt{x}}\right]_{0}^{1} =2e^{\sqrt{1}}-2e^{\sqrt{0}}=2e-2 \\ \\ 2e-(2e-2)=2 \end{eqnarray} \]


Instance 2

Part 0

\[\begin{align} \int_{0}^{\frac{\pi}{2}}e^{2x}\cos xdx=? \\ \\ \int_{0}^{\frac{\pi}{2}}e^{2x}(\sin x)^{'}dx\Rightarrow[e^{2x}\sin x]_{0}^{\frac{\pi}{2}} -\int_{0}^{\frac{\pi}{2}}\sin xd(e^{2x}) \\ \\ 延展:\int_{0}^{\frac{\pi}{2}}\sin d (e^{2x}) \\ \\ (e^{2x})^{\prime}=(e^{2x})^{\prime}\cdot(2x)^{\prime}=2e^{2x} \\ \\ \Rightarrow2\int_{0}^{\frac{\pi}{2}}\sin xe^{2x}dx \\ \\ 延展:2\int_{0}^{\frac{\pi}{2}}\sin xe^{2x}dx =2\int_{0}^{\frac{\pi}{2}}(-\cos x)' e^{2x} dx \\ \\ =2[-\cos xe^{2x}]_{0}^{\frac{\pi}{2}}-2\int_{0}^{\frac{\pi}{2}}(-\cos x)d(e^{2x}) \\ \\ 延展:2\int_{0}^{\frac{\pi}{2}}(-\cos x) d(e^{2x}) \\ \\ =-2\int_{0}^{\frac{\pi}{2}}\cos x\cdot2e^{2x}dx \\ \\ =-4\int_{0}^{\frac{\pi}{2}}\cos xe^{2x}dx \\ \\ \Rightarrow2[-\cos xe^{2\pi}]_{0}^{\frac{\pi}{2}}-(-4\int_{0}^{\frac{\pi}{2}}\cos xe^{2x}dx) \end{align} \]


Part 1

\[\begin{align} 设:I=\int_{0}^{\frac{\pi}{2}}e^{2x}\cos xdx \\ \\ \int_{0}^{\frac{\pi}{2}}e^{2x}\cos xdx=[e^{2x}\sin x]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}}\sin d\left(e^{2x}\right) \\ \\ =[e^{2x}\sin x]_{0}^{\frac{\pi}{2}}-(2[-\cos xe^{2x}]_{0}^{\frac{\pi}{2}} +4\int_{0}^{\frac{\pi}{2}}\cos xe^{2x}dx) \\ \\ I=[e^{2x}\sin x]_{0}^{\frac{\pi}{2}}-(2[-\cos xe^{2x}]_{0}^{\frac{\pi}{2}} +4I) \\ \\ I=e^{\pi}-2-4I \Rightarrow 5I=e^{\pi}-2 \\ \\ I=\frac{1}{5}(e^{\pi}-2) \end{align} \]


posted @ 2024-07-15 21:30  Preparing  阅读(2)  评论(0编辑  收藏  举报