定积分之换元积分法公式

brief

设函数\(f(x)\)在区间\([a,b]\)上连续变化,函数\(x= \varphi (t)\)在区间\([\alpha,\beta]\)上具有连续的导数

\(t\)在区间\([\alpha,\beta]\)上变化时,\(x= \varphi (t)\)的值在\([a,b]\)上变化

\(\varphi(\alpha)=a, \quad \varphi(\beta)=b\)

则:

\[\int_{a}^{b} f(x)dx=\int_{\alpha}^{\beta} f[\varphi(t)]\varphi '(t)dt \]


prove

\[\begin{align} 已知条件: \left\{\begin{array}{l} x=\varphi(t), \quad\left(\alpha \leqslant t \leqslant \beta\right) \\ \\ f(x), \quad(a \leqslant x \leqslant b) \\ \\ \varphi(\alpha)=a, \quad \varphi(\beta)=b \end{array}\right. \\ \\ \\ 根据牛顿莱布尼茨公式: \\ \int_{d}^{b} f(x) d x=F(b)-F(a) \\ \\ \text { 设: } \Phi(t)=F(x) =F[\varphi(t)] \enspace \text { (关键) } \\ \\ \text { 链式法则: } \\ \Phi^{\prime}(t)=(F[\varphi(t)])^{\prime}=F^{\prime}[\varphi(t)] \varphi '(t)=f[\varphi(t)] \varphi^{\prime}(t) \\ \\ \text { 等于: } \\ \int f[\varphi(t)] \varphi^{\prime}(t) d t=\Phi(t)+C \\ \\ \Rightarrow \int_{\alpha}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) d t= \Phi(\beta)-\Phi(\alpha) \\ \\ \because \Phi(t)=F[\varphi(t)] \\ \\ \Phi(\beta)-\Phi(\alpha)=F[\varphi(\beta)]-F[\varphi(\alpha)] \\ \\ \because \varphi(\beta)=b, \quad \varphi(\alpha)=a \\ \\ \Rightarrow F[\varphi(\beta)]-F[\varphi(\alpha)]=F(b)-F(a) =\int_{d}^{b} f(x) d x \\ \\ \therefore \int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) d t \end{align} \]


example 0

Part 0

\[\begin{eqnarray} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x, \quad(a>0) \\ 设: a \sin (t)=x \\ 先求: [\alpha, \beta]= ? \\ \\ \because \varphi(\alpha)=A, \quad \varphi(\beta)=B \\ \\ \because[A, B]=[0, a] \\ \\ \therefore a \sin (t)=0, \enspace \sin (t)=0, \quad t=0=\alpha \\ \\ \therefore a\sin(t)=a, \enspace \sin (t)=1, \quad t=\frac{\pi}{2}=\beta \\ \\ {[\alpha, \beta]=\left[0, \frac{\pi}{2}\right]} \\ \\ \\ \Rightarrow \int_{0}^{a} \sqrt{a^{2}-(a \sin t)^{2}} d(a \sin t) \\ \\ 条目1: \sqrt{a^{2}-(a \sin t)^{2}}=\sqrt{a^{2}\left(1-\sin ^{2} t\right)}=a \sqrt{\cos ^{2} t}=a \cos (t) \\ \\ 条目2: d(a \sin t)=d t \cdot(a \sin t)^{\prime}=d t \cdot a \cos t \\ \\ \int_{0}^{\frac{\pi}{2}} a \cos (t) \cdot a \cos (t) d t=a^{2} \int_{0}^{\frac{\pi}{2}} \cos t \cdot \cos t d t \\ \\ \\ \text { 根据三角函数积化和差公式: } \\ \\ \Rightarrow a^{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos (t+t)+\cos (t-t)}{2} d t=a^{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos (2 t)+1}{2} d t \\ \\ = \frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}} \cos (2 t) d t+\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}} d t \\ \\ \end{eqnarray} \]


Part 1

\[\begin{eqnarray} \text{条目1}:\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}}dt=\frac{a^{2}}{2}[t]_{0}^{\frac{\pi}{2}}=\frac{a^{2}}{2}(\frac{\pi}{2})-0=\frac{a^{2}\pi}{4} \\ \\ \text{条目2}:\int\cos(2t)dt\Rightarrow 设:u=2t \\ \\ \int\cos(u)d(2t)\Rightarrow\int\cos(u)\frac{du}{2}\Rightarrow\frac{1}{2}\sin(u)+C \\ \\ \Rightarrow\frac{1}{2}\sin(2t)+C \\ \\ \therefore\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}}\cos(2t)dt=\frac{1}{2}\cdot\frac{a^{2}}{2}\left[\sin(2t)\right]_{0}^{\frac{\pi}{2}} \\ \\ =\frac{a^{2}}{4}\sin(2\cdot\frac{\pi}{2})-\frac{a^{2}}{4}\sin(0)=0 \\ \\ 因此:\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}}\cos(2t)dt+\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}}dt=\frac{a^{2}\pi}{4} \end{eqnarray} \]


sample 1

part 0

\[\begin{align} \int_{0}^{3}\frac{x}{\sqrt{1+x}}dx=? \\ \\ \begin{cases}设:t=\sqrt{1+x} \\ \\ 则:x=t^{2}-1\end{cases} \\ \\ \boxed{\begin{aligned} \\ [a,b]=[0,3] \\ \\ [\alpha,\beta]:\\ x=0\Rightarrow t^{2}-1=0\Rightarrow t=\pm1 \\ \\ \because\sqrt{1+x}>0, \\ \therefore t=1=\alpha \end{aligned}} \\ \\ \begin{cases} x=3\Rightarrow t^{2}-1=3\Rightarrow t=\pm2 \\ \\ \because\sqrt{1+x}>0, \\ \therefore t=2=\beta \\ \\ [\alpha,\beta]=[1,2] \end{cases} \\ \\ \\ \Rightarrow\int_{1}^{2}\frac{t^{2}-1}{t}d(t^{2}-1) \\ \\ d(t^{2}-1)=dt(t^{2}-1)^{\prime}=dt\cdot2t \\ \\ \Rightarrow\int_{1}^{2}\frac{t^{2}-1}{t}2tdt=2\int_{1}^{2}(t^{2}-1)dt \end{align} \]


part 1

\[\begin{aligned} 2\int_{1}^{2}t^{2}dt-2\int_{1}^{2}dt \\ \\ 2\int_{1}^{2}t^{2}dt=2[\frac{1}{1+2}t^{2+1}]_{1}^{2}=2[\frac{1}{3}t^{3}]_{1}^{2} \\ \\ 2\int_{1}^{2}dt=2[t]_{1}^{2} \\ \\ \Rightarrow2[\frac{1}{3}t^{3}]^{2}-2[t]^{2}=2[\frac{1}{3}t^{3}-t]^{2} \\ \\ \boxed{\Rightarrow 2[\frac{(\sqrt{1+x})^{3}}{3}-(\sqrt{1+x})]_{1}^{2}} \\ \\ [\frac{(\sqrt{3})^{3}}{3}-\sqrt{3}]=0 \\ \\ [\frac{(\sqrt{2})^{3}}{3}-\sqrt{2}]=\frac{-\sqrt{2}}{3} \\ \\ \Rightarrow2[0-(-\frac{\sqrt{2}}{3})]=\frac{2\sqrt{2}}{3} \end{aligned} \]


sample 2

援引题:example 9

\[\begin{align} \int_{0}^{\frac{\pi}{2}}\cos^{5}x\sin xdx=? \\ \\ 设: \cos(x)=t \\ \\ \Rightarrow\int_{0}^{\frac{\pi}{2}}\cos^{5}x(-\cos x)^{\prime}dx \\ \\ (-\cos x)^{\prime}\cdot dx=d(-\cos x)=d(-t) \\ \\ -(-\sin x)dx=d(-t) \\ \\ \because dt=d(\cos x)=-\sin xdx \\ \\ \therefore d(-t)=-dt \\ \\ \Rightarrow\int_{0}^{\frac{\pi}{2}}t^{5}\cdot-dt =-\int_{0}^{\frac{\pi}{2}}t^{5}dt=-[\frac{1}{1+5}t^{5+1}]_{0}^{\frac{\pi}{2}} \\ \\ \Rightarrow-[\frac{1}{6}t^{6}]_{0}^{\frac{\pi}{2}}=-[\frac{1}{6}\cos^{6}(x)]_{0}^{\frac{\pi}{2}} \\ \\ \Rightarrow-(\frac{1}{6}[\cos^{6}(\frac{\pi}{2})])-(\frac{1}{6}[\cos^{6}(0)]) \\ \\ \Rightarrow 0-(-\frac{1}{6}\cdot1)=\frac{1}{6} \end{align} \]


posted @ 2024-07-08 22:47  Preparing  阅读(31)  评论(0编辑  收藏  举报