定积分例题

first

\[\begin{align} \Phi(x)=\int_{0}^{x^{2}} \sin t d t, \enspace \Phi^{\prime}(x)=? \\ \\ 设: u=x^{2} \\ \\ \text { 则: } G(u)=\int_{0}^{u} \sin t d t=\Phi(x) \\ \\ 链式法则: G^{\prime}(u)=G^{\prime}(u) \cdot(u)^{\prime} \\ \\ 微积分基本公式: G^{\prime}(u)=\left(\int_{0}^{u} \sin t d t\right)^{\prime}=\sin (u)=\sin x^{2} \\ \\ (u)^{\prime}=\left(x^{2}\right)^{\prime}=2 x \\ \\ \therefore \Phi^{\prime}(x)=\left(\int_{0}^{x} \sin t d t\right)^{\prime}=2 x \sin x^{2} \end{align} \]


second

\[\begin{eqnarray} \lim _{x \rightarrow 0} \frac{\int_{0}^{x} \cos t^{2} d t}{x}=? \\ \\ \because \lim _{x \rightarrow 0} \int_{0}^{x} \cos t^{2} d t=0 \\ \\ \therefore 题目是\frac{0}{0} 型极限,\text { 适用于洛必达法则 } \\ \\ \lim _{x \rightarrow 0} \frac{\int_{0}^{x} \cos t^{2} d t}{x}=\lim _{x \rightarrow 0} \frac{\left(\int_{0}^{x} \cos t^{2} d t\right)^{\prime}}{(x)^{\prime}} \\ \\ \left(\int_{0}^{x} \cos ^{2}t d t\right)^{\prime}=\cos x^{2} \\ \\ \Rightarrow \lim _{x \rightarrow 0} \frac{\cos x^{2}}{1}=\lim _{x \rightarrow 0} \cos x^{2}=1 \end{eqnarray} \]


third

\[\begin{align} \int_{0}^{1}x^{2}dx=? \\ \\ \because(\frac{1}{u+1}x^{u+1})^{\prime}=x^{u} \\ \\ \therefore(\frac{1}{3}x^{3})^{\prime}=x^{2} \\ \\ \int x^{2}dx=\frac{x^{3}}{3}+C \\ \\ 根据牛顿莱布尼茨公式: \\ \int_{0}^{1}x^{2}dx = [\frac{x^{3}}{3}]_{1}^{2} \\ \frac{(1)^{3}}{3}-\frac{(0)^{3}}{3}=\frac{1}{3} \end{align} \]


fourth

\[\begin{align} \int_{0}^{1}\frac1{1+x^{2}}dx=? \\ \\ \because\int\frac{1}{1+x^{2}}dx=\arctan{\left(x\right)}+C \\ \\ \therefore\int_{0}^{1}\frac{1}{1+x^{2}}dx=[\arctan(x)]_{0}^{1} \\ \\ \arctan(1)-\arctan(0)=\frac{\pi}{4}-0=\frac{\pi}{4}, \quad (0\leq x\leq1) \end{align} \]


fifth

\[\begin{align} \int_{1}^{3}\left|x-2\right|dx=? \\ \\ \int_{1}^{3}|x-2|dx\Rightarrow\int_{1}^{2}|x-2|dx+\int_{2}^{3}|x-2|dx \\ \\ 当:1\leq x\leq 2, \quad 2-x=|x-2| \\ \\ 当:2\leq x\leq3,\quad x-2=|x-2| \\ \\ \therefore\int_{1}^{2}(2-x)dx+\int_{2}^{3}(x-2)dx \\ \\ \int2dx=2x+C \\ \\ \int xdx=\frac{1}{2}x^{2}+C \\ \\ \int_{1}^{2}\left(2-x\right)dx=\left[2x-\frac{1}{2}x^{2}\right]_{1}^{2} \\ \\ \int_{2}^{3}\left(x-2\right)dx=\left[ \frac{1}{2}x^{2}-2x \right]_{2}^{3} \\ \\ [2x-\frac{1}{2}x^{2}]_{1}^{2}= 4-\frac{1}{2}(2)^{2}-(2-\frac{1}{2})=\frac{1}{2} \\ \\ [\frac{1}{2}x^{2}-2x]_{2}^{3}= \frac{9}{2}-6-(\frac{4}{2}-4)=\frac{1}{2} \\ \\ \therefore\int_{1}^{3}|x-2|dx= \frac{1}{2}+\frac{1}{2}=1 \end{align} \]


sixth

\[\begin{align} \int_{\frac{\pi}{3}}^{\pi} \sin \left(2 x+\frac{\pi}{3}\right) d x=? \\ \\ \text { 首先求原函数: } F(x) \\ \\ \text { 设: } t=2 x+\frac{\pi}{3} \\ \\ \int \sin \left(2 x+\frac{\pi}{3}\right) d x=\int \sin t d\left(2 x+\frac{\pi}{3}\right) \\ \\ d\left(2 x+\frac{\pi}{3}\right)=\left(2 x+\frac{\pi}{3}\right)^{\prime} \cdot d x \\ \\ d t=2 d x \Rightarrow d x=\frac{1}{2} d t \\ \\ \Rightarrow \int \sin t \cdot \frac{1}{2} d t=\frac{1}{2} \cdot-\cos (t)+C \\ \\ F(x)=-\frac{1}{2} \cos \left(2 x+\frac{\pi}{3}\right)+C \\ \\ 据牛顿-莱布尼茨公式: \\ \\ \int_{\frac{\pi}{3}}^{\pi} \sin \left(2 x+\frac{\pi}{3}\right) d x=\left[-\frac{1}{2} \cos \left(2 x+\frac{\pi}{3}\right)\right]_{\frac{\pi}{3}}^{\pi} \\ \\ -\frac{1}{2} \cos \left(2 \cdot \pi+\frac{\pi}{3}\right)= -\frac{1}{2} [ \cos (2 \pi) \cos \left(\frac{\pi}{3}\right)-\sin (2 \pi) \sin \left(\frac{\pi}{3}\right) ] \\ \\ -\frac{1}{2}\left(1 \cdot \frac{1}{2}-0\right)=-\frac{1}{4} \\ \\ -\frac{1}{2} \cos \left(\frac{2 \pi}{3}+\frac{\pi}{3}\right)=-\frac{1}{2} \cos (\pi)=-\frac{1}{2} \cdot-1=\frac{1}{2} \\ \\ -\frac{1}{4}-\frac{1}{2}=-\frac{3}{4} \end{align} \]


posted @ 2024-07-07 20:09  Preparing  阅读(26)  评论(0编辑  收藏  举报