有理函数的不定积分例题

example 0

0.First

\[\begin{aligned} \int\frac{1}{\sin x+\cos x}dx=? \\ \\ 设:u=\tan\frac{x}{2}, \enspace x=2\arctan(u) \\ \\ \sin x=\frac{2u}{1+u^{2}}, \enspace \cos x=\frac{1-u^{2}}{1+u^{2}} \\ \\ \int\frac{1}{\frac{2u}{1+u^{2}} +\frac{1-u^{2}}{1+u^{2}}}d\left(2\arctan u\right) \\ \\ d(2\arctan u)=du\cdot(2\arctan u)' \\ \\ [2\arctan(u)]^{\prime}=(2)^{\prime}\arctan(u)+2[\arctan(u)]'= \frac{2}{1+u^{2}} \\ \\ \int\frac{1+u^{2}}{2u+1-u^{2}}\cdot\frac{2}{1+u^{2}}du=2\int\frac{1}{1-u^{2}+2u}du \end{aligned} \]


0.Second

\[\begin{aligned} 1-u^{2}+2u\Rightarrow1+(u^{2}+2u)-1+1 \\ \\ 1+(-u^{2}+2u-1)+1 \\ \\ \boxed {2+(u^{2}-2u+1)=2-(u-1)^{2} } \\ \\ \boxed {[\sqrt{2}-(u-1)][\sqrt{2}+(u-1)]} \\ \\ \Rightarrow 2\int\frac{1}{\left[\sqrt{2}-\left(u-1\right)\right]\left[\sqrt{2}+\left(u-1\right)\right]}du \end{aligned} \]


0.Thirdly

\[\begin{align} 设: u-1=j \\ \\ \frac{A(\sqrt{2}+j)}{(\sqrt{2}-j)(\sqrt{2}+j)}+ \frac{B(\sqrt{2}-j)}{(\sqrt{2}-j)(\sqrt{2}+j)} \\ \\ =\frac{A}{\sqrt{2}-j}+\frac{B}{\sqrt{2}+j} \\ \\ =A(\sqrt{2}+j)+B(\sqrt{2}-j)=1 \\ \\ A\sqrt{2}+Aj+B\sqrt{2}-Bj=1 \\ \\ \sqrt{2}(A+B)+j(A-B)=1 \\ \\ \because j 为未知变量 \\ \\ \begin{cases}A-B=0\Rightarrow A=B \\ \\ \sqrt{2}(A+B)=1 \end{cases} \\ \\ 2\sqrt{2}A=1\Rightarrow A=B=\frac{1}{2\sqrt{2}} \\ \\ 2\int\left(\frac{\frac{1}{2\sqrt{2}}}{\sqrt{2}-(u-1)}+\frac{\frac{1}{2\sqrt{2}}}{\sqrt{2}+(u-1)}\right)du \\ \\ 2\int \frac{1}{2\sqrt{2}} [\frac{1}{\sqrt{2}-(u-1)}+\frac{1}{\sqrt{2}+(u-1)}] du \\ \\ \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2}-(u-1)}du+\frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2}+(u-1)}du \end{align} \]


参考: example 2

0.Fourth

\[\begin{align} 设:\sqrt{2}-(u-1)=h \\ \\ \int\frac{1}{\sqrt{2}-(u+1)}du=\int\frac{1}{h}d\left[\sqrt{2}-(u-1)\right] \\ \\ =\frac{1}{\sqrt{2}}\int\frac{1}{h}\cdot -1 dh=-\frac{1}{\sqrt{2}}\int\frac{1}{h}dh \\ \\ =-\frac{1}{\sqrt{2}}\ln\left|h\right|+C \\ \\ \boxed{ \frac{1}{\sqrt{2}}\ln\left|\sqrt{2}-\left(u-1\right)\right|+C } \\ \\ \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}+(u-1)} du \\ \\ \boxed{ \frac{1}{\sqrt{2}} \ln |\sqrt{2}+(u-1)|+C } \end{align} \]


0.Fifth

\[\begin{align} -\frac{1}{\sqrt{2}} \ln |\sqrt{2}-(u-1)|+\frac{1}{\sqrt{2}} \ln |\sqrt{2}+(u-1)| \\ \\ \frac{1}{\sqrt{2}} \ln |\sqrt{2}+(u-1)|-\frac{1}{\sqrt{2}} \ln |\sqrt{2}-(u-1)| \\ \\ \frac{1}{\sqrt{2}} \left( \ln |\sqrt{2}+u-1|-\ln |\sqrt{2}-u+1| \right)+C \\ \\ \frac{1}{\sqrt{2}} \left(\ln \left|\tan \frac{x}{2}+\sqrt{2}-1\right|-\ln \left|\sqrt{2}+1-\tan \frac{x}{2}\right|\right) +C \\ \\ \frac{1}{\sqrt{2}}\ln\left|\frac{\tan\frac{x}{2}+\sqrt{2}-1}{\sqrt{2}+1-\tan\frac{x}{2}}\right|+C \end{align} \]


example1

first

\[\begin{align} \int\frac{x^{2}+6}{x^{2}-9x+8}dx=? \\ \\ 对 x^{2}-9x+8 进行因式分解 \\ \\ 据公式: x^{2}+(a+b)x+ab=(x+a)(x+b) \\ \\ \begin{cases} ab=8 \\ \\ a+b=-9 \end{cases} \\ \\ a=-1,b=-8 \\ \\ x^{2}-9y+8\Rightarrow (x-1)(x-8) \\ \\ \frac{x+b}{(x-1)(x-8)}\Rightarrow\frac{x}{(x-1)(x-8)}+\frac{6}{(x-1)(x-8)} \\ \\ 转化为:\frac{A(x-8)}{(x-1)(x-8)}+\frac{B(x-1)}{(x-1)(x-8)}=\frac{A}{(x-1)}+\frac{B}{(x-8)} \end{align} \]


second

\[ \begin{aligned} x+6=A(x-8)+B(x-1) \\ \\ =Ax-8A+Bx-B \\ \\ Ax+Bx-8A-B \\ \\ x+Bx=x(A+B)=x\Rightarrow A+B=1 \\ \\ -8A-B=6 \\ \\ \because B=1-A \\ \\ -8A-(1-A)=6,A=-1,B=2 \\ \\ \Rightarrow\frac{-1}{x-1}+\frac{2}{x-8} \end{aligned} \]


thirdly

\[\begin{aligned} \int\frac{-1}{x-1}dx+\int\frac{2}{x-8}dx \\ \\ \int\frac{-1}{x-1}dx \\ 设:u=x-1 \\ \\ \Rightarrow-1\int\frac{1}{u}d(x-1) \\ d(x-1)=du\cdot(x-1)^{\prime}=du \\ \\ -\int\frac{1}{u}du=-\ln|u|+C \\ \\ \int\frac{2}{x-8}dx \\ 设:V=x-8 \\ \\ \Rightarrow2\int\frac{1}{V}d(x-8) \\ d(x-8)=dV\cdot(x-8)^{\prime}=dV \\ \\ 2\int\frac{1}{V}dV=2\ln \vert V\vert+C \\ \\ -\ln\left|u\right|+2\ln\left|V\right|+C \\ \\ -\ln\left|x-1\right|+2\ln\left|x-8\right|+C \end{aligned} \]


example2

first

\[\begin{align} \int \frac{1}{(2+5 x)\left(x^{2}+7\right)} d x =? \\ \\ \frac{A\left(x^{2}+7\right)}{(2+5 x)\left(x^{2}+7\right)}+\frac{M x+N}{(2+5 x)\left(x^{2}+7\right)} \Rightarrow \frac{A}{2+5 x}+\frac{M x+N}{x^{2}+7} \\ \\ A\left(x^{2}+7\right)+(Mx+N)(2+5 x)=1 \\ \\ A x^{2}+7 A+2 Mx+5 M x^{2}+2 N+5 Nx=1 \\ \\ x^{2}(A+5 M)+x(2 M+5 N)+7 A+2 N=1 \\ \\ \left\{\begin{array}{l} A+5 M=0 \\ \\ 2 M+5 N=0 \\ \\ 7 A+2 N=1 \end{array}\right. \\ \\ A=-5 M, \quad M=-\frac{5}{2}N, \quad A=\frac{1-2 N}{7} \\ \\ \text { 据: } \quad A+5M=0 \Rightarrow \frac{1-2 N}{7}+5\left(-\frac{5 N}{2}\right)=0 \\ \\ \frac{2-4 N}{14}-\frac{175 N}{14}=0 \\ \\ N=\frac{2}{179}, \quad M=-\frac{5}{179}, \quad A=\frac{25}{179} \\ \\ \Rightarrow \frac{\frac{25}{179}}{2+5 x}+\frac{-\frac{5}{179} x+\frac{2}{179}}{x^{2}+7} \end{align} \]


second

\[\begin{align} \int\frac{25}{179}dx, \\ 设:u=2+5x \\ \\ \frac{25}{179}\int\frac{1}{u}d(2+5x)=\frac{25}{179}\int\frac{1}{u}\cdot5du \\ \\ \frac{125}{179}\int\frac{1}{u}du=\frac{125}{179}\ln|u|+C \\ \\ \frac{125}{179}\ln\vert2+5x\vert+C \\ \\ \\ \\ \int\frac{-5}{\frac{179}{x^{2}+7}}dx \\ \\ 设:v=x^{2}+7 \\ \\ d(v)=(v)^{\prime}\cdot dv=(x^{2}+7)^{\prime}\cdot dv=2xdv \\ \\ -\frac{5}{179}\int\frac{x}{v}2xdv=-\frac{10}{179}\int\frac{1}{v}dv \\ \\ =-\frac{10}{179}\ln\left|v\right|+C=\frac{-10}{179}\ln\left|x^{2}+7\right|+C \end{align} \]


thirdly

\[\begin{align} \int \frac{\frac{2}{179}}{x^{2}+7} d x \\ \\ \frac{2}{179} \int \frac{1}{\left(\frac{x^{2}}{7}+1\right) 7} d x \Rightarrow \frac{2}{179} \int \frac{1}{7} \cdot \frac{1}{1+\left(\frac{x}{\sqrt{7}}\right)^{2}} d x \\ \\ \text { 设: } t=\frac{x}{\sqrt{7}} \\ \\ \frac{2}{179} \int \frac{1}{7} \cdot \frac{1}{1+t^{2}} d\left(\frac{x}{\sqrt{7}}\right) \\ \\ d\left(\frac{x}{\sqrt{7}}\right)=d x\left(\frac{x}{\sqrt{7}}\right)^{\prime}=\frac{1}{\sqrt{7}} d x \\ \\ d t=\frac{1}{\sqrt{7}} d x, \enspace d x=\sqrt{7} d t \\ \\ \frac{2}{179} \int \frac{1}{7} \cdot \sqrt{7} \cdot \frac{1}{1+t^{2}} d t=\frac{2}{179 \sqrt{7}} \int \frac{1}{1+t^{2}} d t \\ \\ 据积分表中的公式: \int \frac{1}{1+x^{2}}dx=\arctan(x)+C \\ \\ \Rightarrow \frac{2}{179 \sqrt{7}} \arctan (t)+C \\ \\ =\frac{2}{179 \sqrt{7}} \arctan \left(\frac{x}{\sqrt{7}}\right)+C \\ \\ \\ \\ \Rightarrow \frac{125}{179} \ln |2+5 x|-\frac{10}{179} \ln \left|x^{2}+7\right|+\frac{2}{179 \sqrt{7}} \arctan \left(\frac{x}{\sqrt{7}}\right) + C \end{align} \]


posted @ 2024-06-22 22:30  Preparing  阅读(12)  评论(0编辑  收藏  举报