换元积分法训练题

在求解不定积分的过程中,第一和第二换元积分法的应用不是彼此孤立的,往往需要同时混合使用

instance 0

\[\begin{align} \int x^{3}\sqrt{4-x^{2}}dx=? \\ \\ 设:x=2\sin t \\ \\ \int\left(2\sin t\right)^{3}\sqrt{4-4\sin^{2}t} \cdot d\left(2\sin t\right) \\ \\ \int(2\sin t)^{3}\sqrt{4(1-\sin^{2}t)}2\cos tdt \\ \\ \int8\sin^{3}t\cdot\sqrt{4\cos^{2}t}\cdot2\cos tdt \\ \\ \int8\sin^{3}t\cdot2\cos t\cdot2\cos tdt \\ \\ 32\int\sin^{3}t\cos^{2}tdt \\ \\ 设:u=\cos t \\ \\ du=d(\cos t)=(\cos t)^{\prime}dt=-\sin tdt \\ \\ \frac{du}{-\sin t}=dt \\ \\ 32\int\sin^{3}t u^{2}\cdot\frac{du}{-\sin t} \\ \\ -32\int\sin^{2}t u^{2}du \\ \\ -32\int(1-u^{2})u^{2}du=-32\int(u^{2}-u^{4})du \\ \\ =-32\left(\frac{1}{3}u^{3}-\frac{1}{5}u^{5}\right)+C \\ \\ =-\frac{32}{3}\cos^{3}t+\frac{32}{5}\cos^{5}t+C \\ \\ \because\sin t=\frac{x}{2} \\ \\ 根据勾股定理: \cos t=\frac{\sqrt{4-x^{2}}}{2} \\ \\ \cos^{3}t=(\frac{\sqrt{4-x^{2}}}{2})^{3}=\frac{(4-x^{2})^{\frac{3}{2}}}{8} \\ \\ \cos^{5}t=(\frac{\sqrt{4-x^{2}}}{2})^{5}=\frac{(4-x^{2})^{\frac{5}{2}}}{32} \\ \\ -\frac{32}{3}\cdot\frac{(4-x^{2})^{\frac{3}{2}}}{8}+\frac{32}{5}\cdot\frac{(4-x^{2})^{\frac{5}{2}}}{32}+C \\ \\ =-\frac{4}{3}(4-x^{3})^{\frac{3}{2}}+\frac{1}{5}(4-x^{2})^{\frac{5}{2}}+C \end{align} \]


paradigm 0

援引题Sample 0

\[\begin{align} \int \sqrt{3+2 x-x^{2}} d x=? \\ \\ \int \sqrt{3-x^{2}+2 x-1+1} d x \\ \\ \int \sqrt{3+\left[-\left(x^{2}-2 x+1\right)\right]+1} d x \\ \\ \int \sqrt{4+\left[-(x-1)^{2}\right]} d x \\ \\ \text { 设: } \quad t=x-1 \\ \\ \Rightarrow \int \sqrt{4-t^{2}} d(x-1)=\int \sqrt{2^{2}-t^{2}} d t \\ \\ 根据援引题:\text {Sample 0} \\ \\ \Rightarrow \frac{x-1}{2} \sqrt{2^{2}-(x-1)^{2}}+\frac{2^{2}}{2} \arcsin \frac{x-1}{2}+C \\ \\ =\frac{x-1}{2} \sqrt{3+2 x-x^{2}}+2 \arcsin \frac{x-1}{2}+C \end{align} \]


paradigm 1

援引题: Sample3

\[\begin{align} \quad \int \frac{2 x+1}{\sqrt{x^{2}+2 x+5}} d x=? \\ \\ \Rightarrow \int \frac{2 x+1}{\sqrt{\left(x^{2}+2 x+1\right)+4}} d x=\int \frac{2 x+1}{\sqrt{(x+1)^{2}+2^{2}}} d x \\ \\ \text { 设: } u=x+1 \\ \\ \text { 则: } x=u-1 \\ \\ \int \frac{2(u-1)+1}{\sqrt{u^{2}+2^{2}}} d(x+1) \\ \\ \Rightarrow \int \frac{2 u-1}{\sqrt{u^{2}+2^{2}}} d u=\int \frac{2 u}{\sqrt{u^{2}+2^{2}}} d u-\int \frac{1}{\sqrt{u^{2}+2^{2}}} d u \\ \\ \\ 解决第一式: \\ 再设: u^{2}+2^{2}=h \\ \\ \int \frac{2 u}{\sqrt{h}} d\left(u^{2}+2^{2}\right) \Rightarrow \int \frac{2 u}{\sqrt{h}} \cdot \frac{d h}{2 u}=\int \frac{1}{\sqrt{h}} d h \\ \\ \int \frac{1}{\sqrt{h}} d h=\int \frac{1}{h^{\frac{1}{2}}} d h= \int h^{-\frac{1}{2}} d h= \left[1 \div (-\frac{1}{2}+1) \right] h^{-\frac{1}{2}+1}+C \\ \\ =2 h^{\frac{1}{2}}+C \\ \\ \\ \text { 解决第二式, 根据援引题Sample } 3: \\ \\ \int \frac{1}{\sqrt{u^{2}+2^{2}}} d u= \ln \left(\sqrt{u^{2}+2^{2}}+u\right)+C \\ \\ \\ 2 h^{\frac{1}{2}} - \ln \left(\sqrt{u^{2}+2^{2}}+u\right) +C \\ \\ =2(x^{2}+2x+5)^{\frac{1}{2}}-\ln (\sqrt[]{x^{2}+2x+5}+x+1)+C \end{align} \]


posted @ 2024-05-18 22:42  Preparing  阅读(8)  评论(0编辑  收藏  举报