三角函数之和差化积公式(贰)

perface

Invoke: 积化和差公式

从 积化和差 推衍得到 和差化积


First

\[ \begin{align} 已知积化和差公式: \\ \sin\alpha\cos\beta= \frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2} \\ \\ 设\alpha\Rightarrow\frac{\alpha+\beta}{2}, \enspace \beta\Rightarrow\frac{\alpha-\beta}{2} \enspace,将假设代入积化和差公式: \\ \\ 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2}) =\sin(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}) + \sin(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}) \\ \\ \\ \Rightarrow\sin\left(\frac{2\alpha+\beta-\beta}{2}\right)+\sin\left(\frac{\alpha-\alpha+\beta+\beta}{2}\right) \\ \\ \Rightarrow\sin\left(\frac{2\alpha}{2}\right)+\sin\left(\frac{2\beta}{2}\right)=\sin\alpha+\sin\beta \\ \\ \therefore 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} =\sin\alpha+\sin\beta \\ \\ 获得公式1: \enspace \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \end{align} \]


Second

\[\begin{align} 已知积化和差公式: \\ \cos\alpha\sin\beta=\frac{\sin\left(\alpha+\beta\right)-\sin\left(\alpha-\beta\right)}{2} \\ \\ 设\alpha\Rightarrow\frac{\alpha+\beta}{2}, \enspace \beta\Rightarrow\frac{\alpha-\beta}{2} \enspace,将假设代入积化和差公式: \\ \\ 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})=\sin(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}) -\sin(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}) \\ \\ \Rightarrow\sin(\frac{2\alpha}{2})-\sin(\frac{2\beta}{2})=\sin\alpha-\sin\beta \\ \\ \therefore 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})=\sin\alpha-\sin\beta \\ \\ 获得公式2: \enspace \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{align} \]


Third

\[\begin{align} 已知积化和差公式: \\ \cos\alpha\cos\beta=\frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2} \\ \\ 设\alpha\Rightarrow\frac{\alpha+\beta}{2}, \enspace \beta\Rightarrow\frac{\alpha-\beta}{2} \enspace,将假设代入积化和差公式: \\ \\ 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})=\cos(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}) +\cos(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}) \\ \\ \Rightarrow\cos(\frac{2\alpha+\beta-\beta}{2})+\cos(\frac{\alpha-\alpha+\beta+\beta}{2}) \\ \Rightarrow\cos(\frac{2\alpha}{2})+\cos(\frac{2\beta}{2})=\cos\alpha+\cos\beta \\ \\ \therefore2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2}) =\cos\alpha+\cos\beta \\ \\ 获得公式3: \enspace \cos\alpha+\cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \end{align} \]


Fourth

\[\begin{align} 已知积化和差公式: \\ \sin\alpha\sin\beta=\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{-2} \\ 设\alpha\Rightarrow\frac{\alpha+\beta}{2}, \enspace \beta\Rightarrow\frac{\alpha-\beta}{2} \enspace,将假设代入积化和差公式: \\ \\ -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})=\cos(\frac{\alpha+\beta}{2}+ \frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}) \\ \\ \Rightarrow\cos\left(\frac{2\alpha}{2}\right)-\cos\left(\frac{2\beta}{2}\right) =\cos\alpha-\cos\beta \\ \\ \therefore -2\sin\left( \frac{\alpha+\beta}{2} \right)\sin\left(\frac{\alpha-\beta}{2}\right) =\cos\alpha-\cos\beta \\ \\ 获得公式4: \enspace \cos\alpha-\cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{align} \]


Summarize

\[\begin{align} 公式1: \enspace \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \\ 公式2: \enspace \sin\alpha-\sin\beta =2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \\ 公式3: \enspace \cos\alpha+\cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \\ 公式4: \enspace \cos\alpha-\cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{align} \]


posted @ 2024-05-09 18:07  Preparing  阅读(31)  评论(0编辑  收藏  举报