不定积分的基本性质
不定积分有如下两个基本性质
property 1
两个函数之和(差)的不定积分,等于这两个函数不定积分的和(差),即:
\[\int [f(x)\pm g(x)]dx = \int f(x)dx \pm \int g(x)dx,
\quad \quad \quad (0.0)
\]
要证明式子(0.0)成立,首先要证明式子(0.0)右侧是左侧被积函数\(f(x)\pm g(x)\)的原函数,
为此将式子(0.0)右侧对\(x\)求导,得:
\[\begin{align}
[\int f(x)dx \pm \int g(x)dx]'=[\int f(x)dx]'\pm[\int g(x)dx]'
\\ \\
[F(x)+C]'\pm[G(x)+C]'=F'(x)\pm G'(x)
\\ \\
\because F(x) 是f(x)的原函数, \enspace 即: \enspace F'(x) = f(x)
\\
G(x)同理也是
\\ \\
\therefore F'(x)\pm G'(x)=f(x)\pm g(x)
\\ \\
\because [\int f(x)dx \pm \int g(x)dx]' = f(x)\pm g(x)
\\
\therefore \int f(x)dx \pm \int g(x)dx 是 [f(x)\pm g(x)] 的原函数
\\ \\
即: \int [f(x)\pm g(x)]dx=\int f(x)dx \pm \int g(x)dx
\\
证明成立
\end{align}
\]
property 2
被积函数中不为零的常数因子可以提到积分号外面,即:
\[
\int kf(x)dx=k\int f(x)dx, \quad (k为常数,且k\ne 0)
\]
exercise
00
\[\begin{array}{l}
\int \left(e^{x}+\sin x\right) dx =?
\\ \\
\int \left(e^{x}+\sin x\right) dx=\int e^{x}dx+\int \sin x d x
\\ \\
\because\left(e^{x}\right)^{\prime}=e^{x},(\sin x)^{\prime}=-\cos x
\\ \\
\therefore \int \left(e^{x}+\sin x\right) dx =e^{x}-\cos x+C
\end{array}
\]