证明微分乘法律 $ d(\lambda \mu)=\lambda d\mu + \mu d\lambda $

对微分乘法法则的推导,即证明: $\quad d(\lambda \mu)=\lambda d\mu + \mu d\lambda $

\[\\ \\ \]

\[若y=\mu \lambda ,\quad \lambda = f(x),\quad \mu = g(x), 二者均以x为自变量 \]

\[\\ \\ \]

\[y+\Delta y=(\mu +\Delta \mu) (\lambda +\Delta \lambda ) \]

\[\\ \\ \]

\[=\mu \lambda +\lambda \Delta \mu +\mu \Delta \lambda +\Delta \lambda \Delta \mu \]

\[\\ \\ \]

\[y+\Delta y=y+\lambda \Delta \mu +\mu \Delta \lambda +\Delta \lambda \Delta \mu \]

\[\\ \\ \]

\[\Delta y=\lambda \Delta \mu +\mu \Delta \lambda +\Delta \lambda \Delta \mu \]

\[\\ \\ \]

\[同时除以 \Delta x: \quad \frac{\Delta y}{\Delta x}=\frac{\lambda \Delta \mu}{\Delta x} +\frac{\mu \Delta \lambda }{\Delta x} +\frac{\Delta \lambda \Delta \mu}{\Delta x} \]

\[\\ \\ \]

\[引入极限,设 \Delta x \to 0: \\ \lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}= \lambda \lim_{\Delta x \to 0} \frac{\Delta \mu}{\Delta x} +\mu \lim_{\Delta x \to 0} \frac{\Delta \lambda }{\Delta x} +\lim_{\Delta x \to 0} \frac{\Delta \lambda \Delta \mu}{\Delta x} \]

\[\\ \\ \]

\[\lim_{\Delta x \to 0} \frac{\Delta \lambda \Delta \mu}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta \lambda}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta \mu \]

\[\\ \\ \]

\[而\lim_{\Delta x \to 0} \Delta \mu =\lim_{\Delta x \to 0} g(x+\Delta x)-g(x) \]

\[\\ \\ \]

\[\because \Delta x \to 0,\quad \therefore \lim_{\Delta x \to 0} \Delta \mu =0 \]

\[\\ \\ \]

\[得: \quad \frac{dy}{dx}= \lambda \frac{d\mu }{dx} +\mu\frac{d\lambda }{dx} +\frac{d\lambda }{dx} \cdot 0 \]

\[\\ \\ \]

\[\frac{dy}{dx}= \frac{\lambda d\mu +\mu d\lambda }{dx} \]

\[\\ \\ \]

\[约去dx: \quad dy=\lambda d\mu + \mu d\lambda \]

\[\\ \\ \]

\[证明成立 \]

posted @ 2022-10-04 11:34  Preparing  阅读(302)  评论(0编辑  收藏  举报