隐函数求导训练题

First

\[已知y=f(x) \]

\[则y^{2}=f(x) \cdot f(x) \\ 则y^{2}为包含f(x)的复合函数 \\ (y^{2})'=[f^{2}(x)]' \cdot f'(x) \]

\[\\ \therefore (y^{2})'=2y \cdot y' \]


Second

对数求导法:先取对数,再求导数

\[\\ \\ \]

\[若y=x^{\frac{1}{x}},\quad 求y'(x)即\frac{dy}{dx}=? \]

\[\\ \\ \]

\[y=x^{\frac{1}{x}} \Rightarrow lny=\frac{1}{x}lnx \]

\[\\ \\ \]

\(y\)视作\(x\)的函数,对两边求导:

\[\\ (lny)'=(\frac{lnx}{x})' \\ \]

隐函数求导之术与复合函数求导之术通用.则根据链式法则: \(\frac{d}{dx}=\frac{d}{dy} \cdot \frac{dy}{dx}\)

\[\\ \\ \]

\[\Rightarrow \frac{d(lny)}{dx}\cdot \frac{dy}{dx}=\frac{d(\frac{lnx}{x})}{dx}\]

\[\\ \\ \]

\[\frac{1}{y}\cdot \frac{dy}{dx}= \frac{lnx'x-x'lnx}{x^{2}} \]

\[\\ \\ \]

\[\because (x)'=(x^{1})'=1 \]

\[\\ \\ \]

\[\therefore \frac{dy}{dx}=\frac{1-lnx}{x^{2}}\cdot y \]

\[\\ \\ \]

\[\frac{dy}{dx}=\frac{1-lnx}{x^{2}}\cdot x^{\frac{1}{x}} \]

\[\\ \\ \]

\[\frac{dy}{dx}=x^{-2}\cdot x^{\frac{1}{x}}\cdot (1-lnx) \]

\[\\ \\ \]

\[\frac{dy}{dx}= x^{\frac{1}{x}-2} (1-lnx) \]

\[\\ \\ \]

\[\therefore y'(x)=x^{\frac{1}{x}-2} (1-lnx) \]


Second

\[x^{4}+y^{5}+y^{3}-1=0,\quad 求y'(x)即\frac{dy}{dx} \]

\[\\ \\ \]

\[y^{5}+y^{3}=1-x^{4} \\\]

\(y\)看成\(x\)的函数,同时对两侧求导: \((y^{5}+y^{3})'=(1-x^{4})'\)

\[\\ \\ \]

根据链式法则得:

\[\frac{d(y^{5}+y^{3})}{dx}\cdot \frac{dy}{dx} =\frac{d(1-x^{4})}{dx} \]

\[\\ \\ \]

\[(5y^{4}+3y^{2})\cdot \frac{dy}{dx} =-4x^{3} \]

\[\\ \\ \]

\[\frac{dy}{dx}=\frac{-4x^{3}}{5y^{4}+3y^{2}} \]

\[\\ \\ \]

\[\therefore y'(x)=-\frac{4x^{3}}{5y^{4}+3y^{2}} \]


Third

\[e^{xy}=sin(x+y), \quad \frac{dy}{dx}=? \]

\[\\ \\ \]

\[设xy=k,\quad x+y=u \]

\[\\ \\ \]

\[(e^{k})'=(sinu)' \]

because they both are composite function, therefore:

\[(e^k)'\cdot (k)'=(sinu)'\cdot (u)'\]

\[\\ \\ \]

\[(e^k)'(k)'\Rightarrow e^{k}[(x)(y)]'=e^{k}[x'y+y'x]=e^{k}(y+x\frac{dy}{dx}) \]

\[\\ \\ \]

\[(sinu)'(u)'=cos(x+y)(1+\frac{dy}{dx}) \]

\[\\ \\ \]

\[\Rightarrow e^{xy}(y+x\frac{dy}{dx})=cos(x+y)(1+\frac{dy}{dx}) \]

\[\\ \\ \]

\[e^{xy}y+e^{xy}x\frac{dy}{dx}=cos(x+y)+\frac{dy}{dx}cos(x+y) \]

\[\\ \\ \]

\[e^{xy}x\frac{dy}{dx}-\frac{dy}{dx}cos(x+y)= cos(x+y)-e^{xy}y\]

\[\\ \\ \]

\[\frac{dy}{dx}[e^{xy}x-cos(x+y)]=cos(x+y)-e^{xy}y \]

\[\\ \\ \]

\[\frac{dy}{dx}=\frac{cos(x+y)-e^{xy}y}{e^{xy}x-cos(x+y)} \]

\[\\ \\ \]

\[\therefore y'(x)=\frac{cos(x+y)-e^{xy}y}{e^{xy}x-cos(x+y)} \]


Fourth

\[隐函数求导: \quad x^{2}-y^{2}-4xy=0 \\ 2边同时求导: \quad (x^{2})'-(y^{2})'-(4xy)'=0 \]

\[\\ \\ \]

\[ (x^{2})'=2x \\ (y^{2})'= (y^{2})' \cdot y' =2yy' \\ (4xy)'=(4x)'y+4x(y)'=4y+4xy' \]

\[\\ \\ \]

\[2x-2yy'-4y-4xy'=0 \\ -2yy'-4xy'=-2x+4y \\ y'(-2y-4x)=-2x+4y\]

\[\\ \\ \]

\[y'=\frac{-2x+4y}{-2y-4x} \]

\[\\ \\ \]

\[y'=\frac{-2(x-2y)}{-2(y+2x)} \]

\[\\ \\ \]

\[y'=\frac{x-2y}{2x+y} \]


posted @ 2022-08-19 17:10  Preparing  阅读(480)  评论(0编辑  收藏  举报