证明复合函数求导法则

定理

\[\begin{align} 复合函数求导法则(亦称链式法则):\\ 设\mu=\psi(x)在点x处可导,\quad y=f(\mu)在对应点\mu=\psi(x)处可导,\\ 那么复合函数y=f[\psi(x)]在点x处可导,\quad 则有: \quad y'(x)=f'(\mu) \cdot \psi'(x)\\ 或: \quad \frac{dy}{dx}=\frac{dy}{d\mu} \cdot \frac{d\mu}{dx} \end{align} \]


推导过程

\[\begin{align} 即推导: \quad 若设 \mu=\psi(x),y=f(\mu), \ y'=? \\ \\ y=f(\mu)=f[\psi(x)] 为复合函数, \ y'=f'[\psi(x)] \\ \\ \Delta \mu=\psi(x+\Delta x)-\psi(x)\\ 则 \psi(x+\Delta x)= \psi(x)+\Delta \mu=\mu+\Delta \mu \\ \\ f'[\psi(x)]=\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to 0} \frac{f[\psi(x+ \Delta x)] -f[\psi(x)] } { \Delta x } \\ \\ =\lim_{\Delta x \to 0}\frac{ f(\mu+\Delta \mu)-f(\mu)}{\Delta x} \\ \\ 分子分母同乘以一个式子:\\ \lim_{\Delta x \to 0}\frac{ f(\mu+\Delta \mu)-f(\mu) \cdot [\psi(x+\Delta x)-\psi(x)] } {\Delta x \cdot [\psi(x+\Delta x)-\psi(x)]} \\ \\ \lim_{\Delta x \to 0}\frac{ f(\mu+\Delta \mu)-f(\mu) }{[\psi(x+\Delta x)-\psi(x)]} \cdot \frac{ \psi(x+\Delta x)-\psi(x) } {\Delta x} \\ \\ \lim_{\Delta x \to 0} \frac{[\psi(x+\Delta x)-\psi(x)]}{\Delta x}=\psi'(x) \\ \\ \lim_{\Delta x \to 0} \frac{ f(\mu+\Delta \mu)-f(\mu) }{[\psi(x+\Delta x)-\psi(x)]} =\frac{ f(\mu+\Delta \mu)-f(\mu) }{ \mu+\Delta \mu-\mu } \\ \\ =\lim_{\Delta x \to 0} \frac{ f(\mu+\Delta \mu)-f(\mu) }{\Delta \mu}=f'(\mu) \\ \\ \therefore y'=f'(\mu)\psi'(x) \end{align} \]

posted @ 2022-08-17 16:56  Preparing  阅读(859)  评论(0编辑  收藏  举报