复合函数求导训练

First

\[\begin{eqnarray} y=\tan{\frac{2x}{1+x^{2}}},\quad y'=? \\ \\ y=\tan{u}, \ u=\frac{2x}{1+x^{2}},\quad y'=(\tan{u})'(u)' \\ \\ (\tan{u})'=\sec^{2}{\frac{2x}{1+x^{2}}} \\ \\ (u)'=\frac{(2x)'(1+x^{2})-(1+x^{2})2x}{(1+x^{2})^{2}} \\ \\ (2x)'=2,\\ (1+x^{2})'=(1)'+(x^{2})'=0+2x=2x \\ \\ \therefore (u)'=\frac{2(1+x^{2})-2x \cdot 2x}{(1+x^{2})^{2}}=\frac{2-2x^{2}}{(1+x^{2})^{2}} \\ \\ y'=(\tan{u})'(u)'=\sec^{2}{\frac{2x}{1+x^{2}}} \cdot \frac{2-2x^{2}}{(1+x^{2})^{2}} \end{eqnarray} \]


Second

\[\begin{eqnarray} y=\ln(3x^{2}+x+1),\quad y'=? \\ \\ y=\ln{u},\quad u=3x^{2}+x+1,\\ \therefore y'=(\ln{u})'(u)' \\ \\ (u)'=(3x^{2})'+(x)'+(1)'=(6x+1)+0+0 \\ \\ (\ln{u})'=\frac{1}{u\ln{e}}=\frac{1}{u}=\frac{1}{3x^{2}+x+1} \\ \\ \therefore y'=\frac{6x+1}{3x^{2}+x+1} \end{eqnarray} \]


Third

\[\begin{eqnarray} f(x)=(1+\sin{x})^{2},\quad f'(x)=? \\ \\ 设u(x)=1+\sin{x},\quad 则f(u)=u^{2}\\ f'(x)=f'[u(x)]=f'(u)\cdot u'(x) \\ \\ f'(u)=(u^{2})'=2u=2(1+\sin{x}) \\ \\ u'(x)=(1+\sin{x})'=\cos{x} \\ \\ \therefore f'(x)=f'[u(x)]=2(1+\sin{x})\cos{x} \end{eqnarray} \]


Fourth

\[\begin{eqnarray} y=\cos{\sqrt[]{1+\ln{x}}},\quad y'=? \\ \\ 设u=\sqrt[]{1+\ln{x}}, \ 则y(u)=\cos{u} \\ \\ 设\alpha =1+\ln{x}, 则\alpha(x)=1+\ln{x}, \quad u(\alpha)=\sqrt[]{\alpha} \\ \\ y'=y'(x)=y'\{ u[\alpha (x)] \}=y'(u)\cdot u'(\alpha )\cdot \alpha' (x) \\ \\ y'(u) =(\cos{u})'=-\sin{u} \\ \\ u'(\alpha )=(\sqrt[]{\alpha })'=\frac{1}{2\sqrt[]{\alpha } } \\ \\ \alpha' (x)=(1+\ln{x})'=\frac{1}{x} \\ \\ \frac{1}{x} \cdot \frac{1}{2\sqrt[]{\alpha}} \cdot - \sin{u}= \frac{-\sin{\sqrt[]{1+\ln{x}}} }{2x\sqrt[]{1+\ln{x}} } \\ \\ y'=\frac{-\sin {\sqrt[]{1+\ln{x}}} }{2x\sqrt[]{1+\ln{x}} } \end{eqnarray} \]


Fifth

\[\begin{eqnarray} f'(x)=\ln\sqrt[]{1+x^{2}},\quad f'(x)=? \\ \\ 设\beta=1+x^{2}, \quad u=\sqrt[]{1+x^{2}} \\ 则\beta(x)=1+x^{2},\quad u(\beta)=\sqrt[]{1+x^{2}},\quad f(u)=\ln{u} \\ \\ \because f(x)=f'\{ u[\beta(x)]\}\\ \therefore f'(x)=f'\{ u[\beta(x)]\}=f'(u)\cdot u'(\beta) \cdot \beta '(x) \\ \\ f'(u)=\frac{1}{u} \\ u'(\beta) =\frac{1}{2\sqrt[]{\beta} } \\ \beta '(x)=2x \\ \\ \frac{1}{u} \cdot \frac{1}{2\sqrt[]{\beta} } \cdot 2x =\frac{1}{\sqrt[]{1+x^{2}} } \cdot \frac{1}{2\sqrt[]{1+x^{2}} } \cdot 2x =\frac{x}{1+x^{2}} \\ \\ \therefore f'(x)=\frac{x}{1+x^{2}} \end{eqnarray} \]

Sixth

本题采用了对数求导法

\[\begin{eqnarray} y = \sqrt[4]{ \frac{(x-1)(x-2)}{(x-3)(x-4)} },\quad y'(x)=? \\ \\ y=[\frac{(x-1)(x-2)}{(x-3)(x-4)}]^{\frac{1}{4}} \\ \\ \\ \log{ \frac{(x-1)(x-2)}{(x-3)(x-4)} } {y}=\frac{\ln{y}}{\ln\frac{(x-1)(x-2)}{(x-3)(x-4)}}=\frac{1}{4} \\ \\ \ln{y}=\frac{1}{4} \ln[\frac{(x-1)(x-2)}{(x-3)(x-4)}] \\ \\ \ln{y} =\frac{1}{4} [\ln(x-1)+\ln(x-2)-\ln(x-3)-\ln(x-4)] \\ \\ 同时对两边求导: \\ \frac{d(\ln{y})}{dx} \cdot \frac{dy}{dx}=\frac{1}{4} \frac{d[\ln(x-1)+\ln(x-2)-\ln(x-3)-\ln(x-4)]}{dx} \\ \\ \frac{1}{y}\cdot \frac{dy}{dx}=\frac{1}{4} [\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}] \\ \\ \frac{dy}{dx}=\frac{1}{4} [\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}] \cdot y \\ \\ \frac{dy}{dx}=\frac{1}{4} [\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}] \cdot \sqrt[4]{ \frac{(x-1)(x-2)}{(x-3)(x-4)} } \\ \\ \therefore y'(x)=\frac{1}{4} [\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}] \cdot \sqrt[4]{ \frac{(x-1)(x-2)}{(x-3)(x-4)} } \end{eqnarray} \]


Seventh

\[\begin{eqnarray} (\ln |\sec x+\tan x|)^{\prime}=? \\ \\ 设: \sec x+\tan x=a \\ \\ 据链式法则,原式等于: (\ln a)^{\prime} \cdot(a)^{\prime} \\ \\ 首先: (\tan x)^{\prime}=\sec ^{2} x \\ \\ (\sec x)^{\prime} \Rightarrow \left( \frac{1}{\cos x} \right)^{\prime} =\frac{\sin x}{\cos ^{2} x} \\ \\ =\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}=\tan x \sec x \\ \\ \therefore(a)^{\prime}=\tan x \sec x+\sec ^{2} x \\ \\ \text { 其次: }(\ln a)^{\prime}=\frac{1}{a} =\frac{1}{\sec x+\tan x} \\ \\ \\ (\ln a)^{\prime} \cdot(a)^{\prime}=\frac{\tan x \sec x+\sec ^{2} x}{\sec x+\tan x} \\ \\ =\frac{\sec x(\tan x+\sec x)}{\sec x+\tan x} \\ \\ =\sec x \end{eqnarray} \]


posted @ 2022-08-16 17:58  Preparing  阅读(530)  评论(0编辑  收藏  举报