换底公式$\log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}}$的证明

\[proof:\quad \log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}} \]

\[\\ \\ \]

\[设\log_{a}{b} =r,\quad \log_{c}{b} =m,\quad \log_{c}{a} =n \]

\[\\ \\ \]

\[即:a^{r}=b,\quad c^{m}=b,\quad c^{n}=a \]

\[\\ \\ \]

\[\because a^r=(c^n)^r=b \]

\[\\ \\ \]

\[\because c^m=b \]

\[\\ \\ \]

\[\therefore c^m=c^{nr} \]

\[\\ \\ \]

\[\therefore m=nr \]

\[\\ \\ \]

\[\because r=\frac{m}{n} \]

\[\\ \\ \]

\[\therefore \log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}} \]

posted @ 2022-08-14 20:19  Preparing  阅读(101)  评论(0编辑  收藏  举报