换底公式$\log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}}$的证明
\[proof:\quad \log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}}
\]
\[\\ \\
\]
\[设\log_{a}{b} =r,\quad \log_{c}{b} =m,\quad \log_{c}{a} =n
\]
\[\\ \\
\]
\[即:a^{r}=b,\quad c^{m}=b,\quad c^{n}=a
\]
\[\\ \\
\]
\[\because a^r=(c^n)^r=b
\]
\[\\ \\
\]
\[\because c^m=b
\]
\[\\ \\
\]
\[\therefore c^m=c^{nr}
\]
\[\\ \\
\]
\[\therefore m=nr
\]
\[\\ \\
\]
\[\because r=\frac{m}{n}
\]
\[\\ \\
\]
\[\therefore \log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}}
\]