证明对数公式$\log_{a^n}{b^m}=\frac{m}{n} \log_{a}{b}$与$\log_{a}{x^n}=n\log_{a}{x}$

Formula 1

Method 1

\[proof:\quad \log_{a^n}{b^m}=\frac{m}{n} \log_{a}{b} \]

\[\\ \\ \]

\[设\log_{a^n}{b^m}=x \]

\[\\ \\ \]

\[(a^n)^x=b^m \Rightarrow a^{nx}=b^{m} \]

\[\\ \\ \]

\[\log_{a}{b^m}=nx \Rightarrow nx=m\log_{a}{b} \]

\[\\ \\ \]

\[\therefore x=\frac{m\log_{a}{b}}{n} \Rightarrow \frac{m}{n} \log_{a}{b} \]

\[\\ \\ \]


Method 2

\[proof:\quad \log_{a^n}{b^m}=\frac{m}{n} \log_{a}{b} \]

\[\\ \\ \]

\[\because \quad \log_{a}{b}=\frac{\log_{c}{b}}{\log_{c}{a}} \]

\[\\ \\ \]

\[\therefore \log_{a^n}{b^m}=\frac{\ln{b^m}}{\ln{a^n}} =\frac{m\ln{b}}{n\ln{a}} \]

\[\\ \\ \]

\[\because \log_{a}{b}=\frac{\ln{b}}{\ln{a}}\]

\[\\ \\ \]

\[\therefore \frac{m\ln{b}}{n\ln{a}} = \frac{m}{n} \cdot \log_{a}{b} = \log_{a^n}{b^m} \]


Formula 2

\[proof:\quad \log_{a}{x^n}=n\log_{a}{x} \]

\[\\ \\ \]

\[设\log_{a}{x}=m,\quad 即a^m=x \]

\[\\ \\ \]

\[则\log_{a}{x^n} \Rightarrow \log_{a}{(a^m)^n} \Rightarrow \log_{a}{a^{mn}} \]

\[\\ \\ \]

\[\because a^{m}=x,\quad \log_{a}{x}=m \]

\[\\ \\ \]

\[\therefore \log_{a}{a^m}=m \]

\[\\ \\ \]

\[\therefore \log_{a}{a^{mn}} \Rightarrow mn \]

\[\\ \\ \]

\[\because m=\log_{a}{x} \]

\[\\ \\ \]

\[\log_{a}{a^{mn}} \Rightarrow n \times m \Rightarrow n \times \log_{a}{x} \]

\[\\ \\ \]

\[\therefore \log_{a}{x^n}=n\log_{a}{x} \]

posted @ 2022-08-14 20:03  Preparing  阅读(65)  评论(0编辑  收藏  举报