对数例题集

第一题

\[2(\lg_{}{\sqrt{2} })^2+\lg_{}{\sqrt[]{2}} \times \lg_{}{5} +\sqrt[]{ (\lg_{}{\sqrt[]{2}})^2 - \lg_{}{2} + 1} \]

\[\\ \\ \]

\[\lg_{}{\sqrt[]{2}}[2(\lg_{}{\sqrt[]{2}})+\lg_{}{5}] +\sqrt[]{(\frac{1}{2}\lg_{}{2})^2-\lg{}{2}+1} \]

\[\\ \\ \]

\[\because (\frac{1}{2}\lg_{}{2})^2-\lg{}{2}+1 符合完全平方公式 \]

\[\\ \\ \]

\[\because (\frac{1}{2}\lg_{}{2})^2-\lg{}{2}+1 \Rightarrow (\frac{1}{2}\lg_{}{2}-1) < 0\]

\[\\ \\ \]

\[\because 1-\frac{1}{2} \lg_{}{2} >0 \]

\[\\ \\ \]

\[\therefore (\frac{1}{2}\lg_{}{2})^2-\lg{}{2}+1\Rightarrow 1-\lg_{}{2}+(\frac{1}{2} \lg_{}{2})^2 \]

\[\\ \\ \]

\[\therefore \lg_{}{\sqrt[]{2}}[2(\lg_{}{\sqrt[]{2}})+\lg_{}{5}] +\sqrt[]{1-\lg{}{2}+(\frac{1}{2}\lg_{}{2})^2}\]

\[\\ \\ \]

\[\lg_{}{\sqrt[]{2}}[2(\lg_{}{\sqrt[]{2}})+\lg_{}{5}] +\sqrt[]{(1-\frac{1}{2}\lg_{}{2})^2}\]

\[\\ \\ \]

\[\lg_{}{\sqrt[]{2}}(\lg_{}{\sqrt[]{2}}^2+\lg_{}{5}) +\sqrt[]{(1-\frac{1}{2}\lg_{}{2})^2}\]

\[\\ \\ \]

\[\lg_{}{\sqrt[]{2}}(\lg_{}{2}+\lg_{}{5})+1-\frac{1}{2}\lg_{}{2} \]

\[\\ \\ \]

\[\lg_{}{\sqrt[]{2}}[\lg_{}{(2\cdot5)}]+1-\frac{1}{2}\lg_{}{2} \]

\[\\ \\ \]

\[\lg_{}{\sqrt[]{2}}(\lg_{}{10})+1-\lg_{}{2}^\frac{1}{2} \]

\[\\ \\ \]

\[\because \lg{10} = 1 \]

\[\\ \\ \]

\[\therefore \lg{\sqrt[]{2}}+1-\lg{\sqrt[]{2}}=1 \]


第二题

\[(\lg{5})^2+\lg{2} \cdot \lg{50} \]

\[\\ \\ \]

\[(\lg{5})^2+\lg{2} \cdot \lg{(5\cdot10)} \]

\[\\ \\ \]

\[(\lg{5})^2+\lg{2} \cdot \lg{5}+\lg{2}\cdot\lg{10} \]

\[\\ \\ \]

\[\lg{5}\cdot\lg{5}+\lg{2} \cdot \lg{5}+\lg{2} \]

\[\\ \\ \]

\[\lg{5}(\lg{5}+\lg{2} + \frac{\lg{2}}{\lg{5}}) \]

\[\\ \\ \]

\[\lg{5}[\lg{(5\cdot2)} + \frac{\lg{2}}{\lg{5}}] \]

\[\\ \\ \]

\[\lg{5}(1 + \frac{\lg{2}}{\lg{5}}) \]

\[\\ \\ \]

\[\lg{5} + \lg{5} \cdot \frac{\lg{2}}{\lg{5}} \]

\[\\ \\ \]

\[\lg{5}+\lg{2}= 1 \]


第三题

\[(\lg{2})^{3}+(\lg{5})^{3}+3\lg{2} \cdot \lg{5} \]

\[\\ \\ \]

\[设\lg{2}=a,\lg{5}=b \]

\[\\ \\ \]

\[=a^{3}+b^{3}+3ab \]

\[\\ \\ \]

\[\because a^3+b^3 \Rightarrow (a+b)(a^2-ab+b^2) \]

\[\\ \\ \]

\[\therefore a^{3}+b^{3}+3ab \Rightarrow (a+b)(a^{2}-ab+b^{2})+3ab \]

\[\\ \\ \]

\[\because \lg{2}+\lg{5}=\lg{(2\cdot5)}=1 \]

\[\\ \\ \]

\[(a+b)(a^2-ab+b^2+3ab)=(a+b)(a^{2}+2ab+b^{2})=(a+b)(a+b)^{2} \]

\[\\ \\ \]

\[(\lg{2}+\lg{5})(\lg{2}+\lg{5})^{2}=1 \]


第四题 定义法示例一

\[已知 \log_{a}{(x+y)}=\frac{1}{3}, \log_{a}{x}=4, 求\log_{a}{y} \\ 即已知 a^{ \frac{1}{3} }=x+y, a^{4}= x, 若 a^{n}= y,求n的值 \]

\[\\ \]

\[\because y=(x+y)-x \]

\[\\ \]

\[\therefore a^{\frac{1}{3}}-a^{4}=y \]

\[\\ \]

\[\log_{a}{y}=\log_{a}{a^{\frac{1}{3}}}-\log_{a}{a^{4}}=\log_{a} {(\frac{a^{\frac{1}{3}}} {a^{4}})} \]

\[\\ \]

\[\log_{a}{y}=\log_{a}{(a^{ -\frac{11}{3}})} \]

\[\\ \]

\[y=a^{-\frac{11}{3}} \]

\[\\ \]

\[\therefore \log_{a}{y}=-\frac{11}{3} \]


第五题 定义法示例二

\[若\log_{4}{(3x-1)}=\log_{4}{(x-1)}+\log_{4}{(x+3)},求x \\ 解:\\ \because \log_{4}{(3x-1)}=\log_{4}{[(x-1)(x+3)]} \\ \therefore 3x-1=(x-1)(x+3) \Rightarrow 3x-1=x^{2}+2x-3 \\ x^{2}-x-2=0 \\ \]

然后使用十字相乘法求得解,注意真数的定义域大于零,
利用对数的定义完成对数式与指数式的互相转换是定义法的关键


第六题

\[\log_{a}{x}=2,\log_{b}{x}=3,\log_{c}{x}=6,求\log_{abc}{x}\\ \\ 设 r=\log_{abc}{x}\]

\[\\ \\ \]

\[已知 \log_{a}{x}=\frac{\lg_{}{x}}{\lg_{}{a}}, \log_{b}{x}=\frac{\lg_{}{x}}{\lg_{}{b}}, \log_{c}{x}=\frac{\lg_{}{x}}{\lg_{}{c}} \]

\[\\ \\ \]

\[\log_{abc}{x}=\frac{\lg_{}{x}}{\lg_{}{abc}} \]

\[\\ \\ \]

\[而 \lg_{}{abc}=\lg_{}{a}+\lg_{}{b}+\lg_{}{c} \]

\[\\ \\ \]

\[\therefore r=\frac{\lg_{}{x}}{\lg_{}{a}+\lg_{}{b}+\lg_{}{c}} \]

\[\\ \\ \]

\[\frac{1}{r}= \frac{1}{ \frac{\lg_{}{x}}{\lg_{}{a}+\lg_{}{b}+\lg_{}{c}} } \]

\[\\ \\ \]

\[\Rightarrow \frac{\lg_{}{a}}{\lg_{}{x}} + \frac{\lg_{}{b}}{\lg_{}{x}}+ \frac{\lg_{}{c}}{\lg_{}{x}} \]

\[\\ \\ \]

\[再根据对数的倒数关系式:\frac{1}{r}= \frac{1}{2}+\frac{1}{3}+\frac{1}{6} =1 \]

\[\\ \\ \]

\[\therefore \log_{abc}{x}=1 \]


第七题

\[若 \log_{18}{9}=a, 18^{b}=5,如何用a,b表示 \log_{36}{45} \]

\[\\ \\ \]

\[\because \log_{36}{45}=\frac{\log_{18}{45}}{\log_{18}{36}} \]

\[\\ \\ \]

\[\log_{18}{45}=\log_{18}{(5 \cdot 9)} \Rightarrow \log_{18}{9}+\log_{18}{5} \Rightarrow a+b \]

\[\\ \\ \]

\[\log_{18}{36}=\log_{18}{(\frac{36 \cdot 9}{9})} \Rightarrow \log_{18}{(36\cdot9)} - \log_{18}{9} \]

\[\\ \\ \]

\[\because \log_{18}{(36\cdot9)} \Rightarrow \log_{18}{(4\cdot9\cdot9)} \]

\[\\ \\ \]

\[设 \log_{18}{(4\cdot9\cdot9)}=n, 则 18^{n}=2^{2} \cdot 9^{2}, n=2 \]

\[\\ \\ \]

\[\therefore \log_{36}{45}=\frac{a+b}{2-a} \]

posted @ 2022-08-14 17:39  Preparing  阅读(60)  评论(0编辑  收藏  举报