常见函数之导数

Constant

\[\begin{align} f(x)=C, \quad 求f'(x) \\ \\ f'(x)=\lim_{Δ\to 0}\frac{f(x+\Delta{x} )-f(x)}{\Delta{x} } \\ \\ \lim_{\Delta{x} \to 0}\frac{C-C}{\Delta{x} }=0 \\ \\ \therefore (C)'=0 \end{align} \]


\(\log_{a}{x}\)

\[\begin{align} 求f'(\log_{a}{x}) \\ \\ \lim_{\Delta{x} \to 0} \frac{f(x+\Delta{x} )-f(x)}{\Delta{x} } \\ \\ \Rightarrow \lim_{\Delta{x} \to 0}\frac{\log_{a}{(x+\Delta{x} )}-\log_{a}{x}}{\Delta{x} } \\ \\ =\lim_{\Delta{x} \to 0} \frac{1}{\Delta{x} } \cdot \log_{a}{\frac{x+\Delta{x} }{x}} \\ \\ =\lim_{\Delta{x} \to 0} \frac{1}{\Delta{x} } \cdot \log_{a}{(\frac{x}{x}+\frac{\Delta{x} }{x})} \\ \\ =\lim_{\Delta{x} \to 0} \frac{1}{\Delta{x} } \cdot \log_{a}{(1+\frac{\Delta{x} }{x})} \\ \\ 设u=\frac{\Delta{x} }{x}, \quad 则 \frac{1}{u} =\frac{x}{\Delta{x} }, \quad \frac{1}{\Delta{x} }=\frac{1}{x} \cdot \frac{1}{u} \\ \\ =\lim_{\Delta{x} \to 0} \frac{1}{x} \cdot \frac{1}{u} \cdot \log_{a}{(1+u)} \\ \\ =\frac{1}{x} \cdot \lim_{\Delta{x} \to 0} \log_{a}{(1+u)} ^{\frac{1}{u}} \\ \\ 据第二重要极限, 且 u \to 0( \because \Delta{x} \to 0) \\ \\ \Rightarrow \frac{1}{x} \times \lim_{\Delta{x} \to 0} \log_{a}{e} \\ \\ =\frac{1}{x} \times \lim_{\Delta{x} \to 0} \frac{\ln{e}}{\ln{a}} \\ \\ =\lim_{\Delta{x} \to 0} \frac{1}{x} \cdot \frac{\log_{e}{e}}{\ln{a}} \\ \\ =\lim_{\Delta{x} \to 0} \frac{1}{x} \cdot \frac{1}{\ln{a}}=\lim_{\Delta{x} \to 0}\frac{1}{x\ln_{a}} \\ \\ \therefore (\log_{a}{x})'=\frac{1}{x\ln{a}} \end{align} \]


\(\sqrt x\)

\[\begin{align} 求y'(\sqrt[]{x}) \\ \\ y = \lim_{ \Delta{x} \to 0 } \frac{\sqrt[]{x+\Delta{x} }-\sqrt[]{x}}{ \Delta{x} } \\ \\ \lim_{ \Delta{x} \to 0 } \frac{(\sqrt[]{x+\Delta{x} }-\sqrt[]{x})(\sqrt[]{x+\Delta{x} }+\sqrt[]{x})}{\Delta{x} (\sqrt[]{x+\Delta{x} }+\sqrt[]{x})} \\ \\ \lim_{ \Delta{x} \to 0 }\frac{(\sqrt[]{x+\Delta{x} })^{2}-(\sqrt[]{x})^{2}} { \Delta{x} (\sqrt[]{x+\Delta{x} }+\sqrt[]{x})} \\ \\ \lim_{ \Delta{x} \to 0 }\frac{x+\Delta{x} -x}{\Delta{x} (\sqrt[]{x+\Delta{x} }+\sqrt[]{x})} \\ \\ \lim_{ \Delta{x} \to 0 }\frac{1}{\sqrt[]{x+\Delta{x} }+\sqrt[]{x}} \\ \\ \because \lim_{ \Delta{x} \to 0 }\Delta{x} =0 \\ \\ \therefore\lim_{ \Delta{x} \to 0 }\frac{1}{\sqrt[]{x+0}+\sqrt[]{x}}=\frac{1}{2\sqrt[]{x}} \\ \\ (\sqrt[]{x})'=\frac{1}{2\sqrt[]{x}} \end{align} \]


\(\tan{x}\)

\[\begin{align} 求(\tan{x})' \\ \\ \because \tan{x} =\frac{\sin{x}}{\cos{x}} \\ \\ \therefore (\tan{x})'=(\frac{\sin{x}}{\cos{x}})' \\ \\ =\lim_{\Delta{x} \to 0}\frac{(\sin{x})' \cos{x}-\sin{x}(\cos{x})'}{\cos^{2}{x}} \\ \\ \lim_{\Delta{x} \to 0}\frac{\cos{x}\cos{x}-\sin{x}\cdot -\sin{x}}{\cos^{2}{x}} \\ \\ \lim_{\Delta{x} \to 0}\frac{\cos^{2}{x}+\sin^{2}{x}}{\cos^{2}{x}} \\ \\ \because \cos^{2}{x}+\sin^{2}{x}=1 \\ \\ \therefore \lim_{\Delta{x} \to 0}\frac{\cos^{2}{x}+\sin^{2}{x}}{\cos^{2}{x}}=\frac{1}{\cos^{2}{x}} \\ \\ \because \cos{x}=\frac{1}{\sec{x}} \\ \\ \therefore \lim_{\Delta{x} \to 0}\frac{1}{\cos^{2}{x}}=\sec^{2}{x} \\ \\ (\tan{x})'=\sec^{2}{x} \end{align} \]


\(\sin{x}\)

\[\begin{align} (\sin{x})'=\lim_{\Delta{x} \to 0}\frac{\sin (x+\Delta{x})-\sin{x}}{\Delta{x}} \\ \\ 由和差化积公式: \\ \sin{(x+\Delta{x})}-\sin{x}=2\cos{\frac{x+\Delta{x}+x}{2}} \sin{\frac{x+\Delta{x}-x}{2}} \\ \\ \lim_{\Delta{x} \to 0}2\cdot \cos{\frac{2x+\Delta{x}}{2}} \cdot \sin{\frac{\Delta{x}}{2}} \cdot\frac{1}{\Delta{x}} \\ \\ \lim_{\Delta{x} \to 0} \cos{[\frac{2(x+\frac{\Delta x}{2})}{2}]} \cdot \lim_{\Delta{x} \to 0} \sin{\frac{\Delta{x}}{2}} \cdot 2\frac{1}{\Delta{x}} \\ \\ \\ \\ \lim_{\Delta{x} \to 0} \cos{[\frac{2(x+\frac{\Delta x}{2})}{2}]} =\lim_{\Delta{x} \to 0} \cos{(x+\frac{\Delta x}{2})} \\ \\ \because \lim_{\Delta{x} \to 0} \frac{\Delta x}{2} =0 \\ \\ \therefore \lim_{\Delta{x} \to 0} \cos{(x+\frac{\Delta x}{2})} =\cos x \\ \\ \\ \\ \enspace 设\frac{\Delta{x}}{2}=a, \enspace 则\frac{2}{\Delta{x}}=\frac{1}{a}, \enspace (\Delta{x} \to 0)=(a\to 0) \\ \\ 据第一重要极限: \\ \lim_{\Delta{x} \to 0} \sin{\frac{\Delta{x}}{2}} \cdot 2\frac{1}{\Delta{x}} =\lim_{a \to 0}\sin{a} \cdot \frac{1}{a}=1 \\ \\ \\ \\ \lim_{\Delta{x} \to 0}{\cos (x)} \cdot \lim_{a \to 0}\frac{\sin{a}}{a} \\ \\ \Rightarrow \cos{x} \cdot 1=\cos{x} \\ \\ \therefore (\sin{x})'=\cos{x} \end{align} \]


\(x^{u}\)

援引

\[\begin{align} y=x^{u},y'=? \\ \\ y=x^{u}=e^{u\ln{x}} \\ \\ 设k=u\ln{x},则y=x^{u}=e^{k}=e^{u\ln{x}}, \quad y'可用复合函数求导法则来求导 \\ \\ y'=(e^{k})'\cdot (u\ln{x})' \\ \\ (e^{k})'=e^{k} \\ \\ (e^{u\ln{x}})'=\frac{u}{x\ln{e}}=ux^{-1} \\ \\ e^{k}\cdot ux^{-1}=e^{u\ln{x}}\cdot e^{-\ln{x}}\cdot u \\ \\ u\cdot e^{\ln{x}(u-1)} \\ \\ \because \frac{1}{x}=e^{-\ln{x}} \\ \\ \therefore e^{\ln{x}}=x^{-1}\cdot x^{2}=x \\ \\ u\cdot e^{\ln{x}(u-1)}=ux^{u-1} \\ \\ \therefore y'=ux^{u-1} \end{align} \]


\(a^{x}\)

PS: \(a^{x}\)\(x^{u}\) 的区别在于\(x\)是底数还是指数

\[\begin{align} y=a^{x}, \enspace y'=? ,\enspace a 为常数 \\ \\ \lim_{x \to 0} \frac {a^{(x+\Delta{x})} -a^{x} }{\Delta{x}} \\ \\ \lim_{x \to 0} \frac { a^{x} \cdot a^{\Delta{x}} - a^{x} }{\Delta{x}} \\ \\ \lim_{x \to 0} \frac { a^{x}(a^{\Delta{x}} - 1) }{\Delta{x}} \\ \\ 设 t = a^{\Delta{x}} - 1, 当\Delta{x} \to 0 时, t \to 0,二者等价 \\ \\ a^{\Delta{x}}=t+1, \Delta{x} = \log_{a}{(t+1)} \\ \\ 得到: \lim_{t \to 0} a^{x} \cdot \frac{t}{\log_{a}{(t+1)}} \\ \\ \lim_{t \to 0} a^{x} \cdot \frac{1}{\log_{a}{(t+1)}} \cdot \frac{1}{\frac{1}{t}} \\ \\ \lim_{t \to 0} a^{x} \cdot \frac{1}{ \frac{1}{t} \log_{a}{(t+1)}} \\ \\ 根据对数运算公式进行变形: \\ \lim_{t \to 0} a^{x} \cdot \frac{1}{ \log_{a}{(t+1)^{\frac{1}{t}} }} \\ \\ 根据第二重要极限公式得出: \\ a^{x} \frac{1}{\log_{a}{e}} \\ \\ 根据对数的倒数关系式得到如下: \\ \frac{1}{\log_{a}{e}} = \ln{a} \\ \\ \therefore y' = a^{x}\ln{a} \end{align} \]


\(ax\)

\[\begin{align} f(x)=ax, \enspace 求f'(x), \enspace a为常数 \\ \\ f'(x)=\lim_{\Delta{x} \to 0} \frac{a(x+\Delta{x})-ax}{\Delta{x}} \\ \\ \lim_{\Delta{x} \to 0} \frac{ax+a\Delta{x}-ax}{\Delta{x}} \\ \\ \lim_{\Delta{x} \to 0} \frac{a\Delta{x}}{\Delta{x}}=a \\ \\ \therefore f'(x)=(ax)'=a \end{align} \]


\(ax^{n}\)

\[\begin{align} f(x)=ax^{n}, \enspace a为常数, \enspace f'(x)=? \\ \\ 设x^{n}=u, \enspace 则ax^{n}=au \\ \\ 由链式法则: \enspace f'(x)=(au)' \cdot (x^{n})' \\ \\ (au)'=a, \enspace \enspace (x^{n})'=nx^{n-1} \\ \\ \therefore f'(x)=a \cdot nx^{n-1} \end{align} \]


\(\cos{x}\)

\[\begin{align} 由三角函数和差化积公式:\\ \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\ \\ 因此:\\ \cos (x+\Delta x)-\cos x \Rightarrow -2 \sin \frac{x+\Delta x+x}{2} \sin \frac{x+\Delta x-x}{2} \\ \\ 转化: \\ \lim _{\Delta x \rightarrow 0} \frac{\cos (x+\Delta x)-\cos x}{\Delta x}= \lim _{\Delta x \rightarrow 0} -2 \sin \frac{2 x + \Delta x}{2} \sin \frac{\Delta x}{2} \cdot \frac{1}{\Delta x} \\ \\ -\lim _{\Delta x \rightarrow 0} \sin \left[\frac{2\left(x+\frac{\Delta x}{2}\right)}{2}\right] \cdot \sin \frac{\Delta x}{2} \cdot \frac{2}{\Delta x} \\ \\ \\ 设\frac{\Delta x}{2}=t, \quad 则\frac{2}{\Delta x}=\frac{1}{t}, \quad (\Delta x \rightarrow 0) \Rightarrow(t \rightarrow 0) \\ \\ 因此得: \enspace -1 \cdot \lim _{t \rightarrow 0} \frac{\sin t}{t} \cdot \sin \left(x+\frac{\Delta x}{2}\right) \\ \\ \\ \\ \because \lim_{\Delta x \to 0} \frac{\Delta x}{2}=0 \\ \\ \therefore \lim_{\Delta x \to 0} \sin \left(x+\frac{\Delta x}{2}\right)=0 \\ \\ \\ \\ 根据第一重要极限: \enspace \lim _{t \rightarrow 0} \frac{\sin t}{t}=1 \\ \\ \Rightarrow -1 \cdot(1 \cdot \sin x)=-\sin x \\ \\ \therefore (\cos x)'=-\sin x \end{align} \]


\(\cot x\)

\[\begin{align} (\cot x)^{\prime}=? \\ \\ (\cot x)^{\prime}=(\frac{1}{\tan x})^{\prime} \\ \\ (\frac{1}{\tan x})^{\prime}= \frac{(1)^{\prime}\tan x-(\tan x)^{\prime}}{\tan^{2}x}= \frac{-\frac{1}{\cos^{2}x}}{\tan^{2}x} \\ \\ \Rightarrow -\frac{1}{\cos x}\cdot\frac{1}{\tan^{2}x}= -\frac{1}{\cos^{2}x}\cdot\frac{1}{\frac{\sin^{2}x}{\cos^{2}x}} =-\frac{1}{\sin^{2}x} \\ \\ \because \frac{1}{\sin x}=\csc x \\ \\ \therefore(\cot x)^{\prime}=-\frac{1}{\sin^{2}x}=-\csc^{2}x \end{align} \]


\(\sec x\)

\[\begin{eqnarray} \left(\sec x\right)^{\prime}=? \\ \\ (\sec x)^{\prime}=(\frac{1}{\cos x}) \\ \\ 据导数乘法法则: \\ \Rightarrow\frac{0-\left(-\sin x\right)}{\cos^{2}x} \\ \\ \Rightarrow\frac{\sin x}{\cos^{2}x}=\frac{\sin x}{\cos x}\cdot\frac{1}{\cos x} \\ \\ =\tan x\sec x \end{eqnarray} \]


\(\arccos x\)

\[\begin{align} \text { 若: } y=\arccos x, \quad y^{\prime}=? \\ \\ y=\arccos x \Leftrightarrow \cos y=x \\ \\ (\arccos x)^{\prime}=(\cos y)^{\prime}=(x)^{\prime} \\ \\ \cos y 为复合函数,基于链式法则: \\ \\ (\cos y)^{\prime} \Rightarrow(\cos y)^{\prime} \cdot y^{\prime}=(x)^{\prime} \\ \\ -\sin y \cdot y^{\prime}=1 \\ \\ \because -\sin y=-\sqrt{1-\cos ^{2} y} \\ \\ \because \cos y=x \Rightarrow \cos ^{2} y=x^{2} \\ \\ \therefore\left(-\sqrt{1-x^{2}}\right) \cdot y^{\prime}=1 \\ \\ y^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \end{align} \]


\(\arctan (x)\)

\[\begin{align} y=\arctan(x), \quad y^{\prime}=? \\ \\ y=\arctan(x)\Rightarrow\tan(y)=x \\ \\ \arctan^{\prime}(x)=\tan^{\prime}(y)=(x)^{\prime} \\ \\ 据链式法则: \\ \\ \tan^{\prime}(y)=\tan^{\prime}(y)\cdot y^{\prime} \\ \\ \Rightarrow\tan^{\prime}(y)\cdot y^{\prime}=(x)^{\prime} \\ \\ \Rightarrow\sec^{2}(y)\cdot y^{\prime}=1 \\ \\ y^{\prime}=\frac{1}{\sec^{2}(y)}\Rightarrow\frac{1}{1+\tan^{2}(y)} \\ \\ \because\tan(y)=x\Rightarrow\tan^{2}(y)=x^{2} \\ \\ \therefore y^{\prime}=\frac{1}{\sec^{2}(y)}=\frac{1}{1+\tan^{2}(y)}=\frac{1}{1+x^{2}} \\ \\ \arctan^{\prime}(x)=\frac{1}{1+x^{2}} \end{align} \]


posted @ 2022-07-27 17:03  Preparing  阅读(271)  评论(0编辑  收藏  举报