codeforces CF402E Strictly Positive Matrix Tarjan强连通分量
E. Strictly Positive Matrix
You have matrix $ a $ of size $ n \times n $ .
Let's number the rows of the matrix from $ 1 $ to $ n $ from top to bottom,
let's number the columns from $ 1 $ to $ n $ from left to right.
Let's use $ a_{ij} $ to represent the element on the intersection of the $ i $-th row and the $ j $-th column.
Matrix $ a $ meets the following two conditions:
- for any numbers $ i,j(1 \le i,j \le n) $ the following inequality holds: $ a_{ij} \ge 0 $ ;
- $ \sum^n_{i=1} a_{ij} > 0 $
Matrix $ b $ is strictly positive, if for any numbers $ i,j(1 \le i,j \le n) $ the inequality $ b_{ij} > 0 $ holds.
You task is to determine if there is such integer $ k\ge 1 $ , that matrix $ a^k $ is strictly positive.
Input
The first line contains integer $ n (2 \le n \le 2000) $ — the number of rows and columns in matrix $ a $ .
The next $ n $ lines contain the description of the rows of matrix $ a $ .
The $ i $ -th line contains $ n $ non-negative integers $ a_{i1},a_{i2},\dots,a_{in} (0 \le a_{ij} \le 50 ) $ .
It is guaranteed that $ \sum^n_{i=1}a{ii} > 0 $ .
Output
If there is a positive integer $ k \le 1 $ , such that matrix $ a^k $ is strictly positive, print "YES" (without the quotes).
Otherwise, print "NO" (without the quotes).
Examples
input1
2
1 0
0 1
output1
NO
input2
5
4 5 6 1 2
1 2 3 4 5
6 4 1 2 4
1 1 1 1 1
4 4 4 4 4
output2
YES
题目大意
-
给定一个 $ n*n $ 的矩阵 $ A $ ,每个元素都非负
-
判断是否存在一个整数 $ k $ 使得 $ A^k $ 的所有元素 $ >0 $
-
$ n \le 2000 $
题解
-
以 $ A $ 为有向图邻接矩阵 $ ( >0 $ 有边, $ = 0 $ 无边 )
-
有邻接矩阵次幂的意义可知
-
判断是否为强连通图即可
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
using namespace std;
#define maxn 2005
vector<int>e[maxn];
stack<int>s;
int dfn[maxn],low[maxn],tim,scc;
bool vis[maxn];
void tarjan(int u){
dfn[u]=low[u]=++tim; vis[u]=1; s.push(u);
for(int v,i=0;i<e[u].size();++i)
if(!dfn[v=e[u][i]]){
tarjan(v);
low[u]=min(low[u],low[v]);
} else if(vis[v])
low[u]=min(low[u],dfn[v]);
if(dfn[u]==low[u]){
++scc;
do{
u=s.top(); s.pop(); vis[u]=0;
}while(dfn[u]!=low[u]);
}
}
int n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)
for(int a,j=1;j<=n;++j){
scanf("%d",&a);
if(a&&i!=j) e[i].push_back(j);
}
for(int i=1;i<=n;++i) if(!dfn[i]&&scc<2) tarjan(i);
if(scc==1) puts("YES");
else puts("NO");
return 0;
}