HDU - 1695 GCD
题意:
给出a,b,c,d,k。a和c恒为1。求1~b,1~d中有多少数对的gcd值为k。(x,y)和(y,x)为同一数对(x≠y)。
题解:
这道题像HDU2841的变形。只要把b和d都除以k就基本差不多了。重叠部分除以2,注意(1,1)只有一个,要加上。
#include <iostream> #include <cstdio> #include <algorithm> #include <vector> #include <cmath> using namespace std; typedef long long ll; const int maxn = 1e5+10; int t; int k; int u, v; int x, y; int len; int pnum; int p[maxn]; bool e[maxn]; ll res, ans; vector<int> g[maxn]; void prime() { e[0] = e[1] = 1; pnum = 0; for(int i = 2; i < maxn; i++) { if(e[i]==0) p[++pnum] = i; for(int j = 1; j<=pnum && p[j]*i<maxn; j++) { e[p[j]*i] = 1; if(i%p[j]==0) break; } } } int gcd(int x, int y) { return y==0?x:gcd(y, x%y); } int lcm(int x, int y) { return x/gcd(x, y)*y; } void dfs(int cur, int tol, int sum, int id) { if(cur >= len) return ; int p = lcm(g[id][cur], sum); if(tol&1) res -= y/p; else res += y/p; dfs(cur+1, tol+1, p, id); dfs(cur+1, tol, sum, id); } int main() { prime(); for(int i = 1; i <= pnum; i++) { int cnt = 1; while(cnt*p[i] <= 100000) { g[cnt*p[i]].push_back(p[i]); cnt++; } } scanf("%d", &t); for(int casee = 1; casee <= t; casee++) { scanf("%d%d%d%d%d", &u, &x, &v, &y, &k); if(!k || x<k || y<k) { printf("Case %d: 0\n", casee); continue; } x /= k; y /= k; if(x < y) swap(x, y); ans = y; for(int i = 2; i <= x; i++) { res = 0; len = g[i].size(); dfs(0, 0, 1, i); ans += y-res; if(i==y) ans = ans/2+1; } printf("Case %d: %lld\n", casee, ans); } }