CF1027C Minimum Value Rectangle 题解
这是一道数学题。
假设边长为 \(a,b\),那么:
\[\dfrac{P^2}{S}=\dfrac{(2a+2b)^2}{ab}=\dfrac{4a^2+8ab+4b^2}{ab}=4(\dfrac{a}{b}+\dfrac{b}{a})+8
\]
由基本不等式,
\[4(\dfrac{a}{b}+\dfrac{b}{a})+8 \geq 16
\]
而当 \(a,b\) 越接近时,结果越小。
于是这道题就变成了哪两个木棍差值最小。
我们将偶数根数的木棍加入一个序列(如果有 4 根以上要多次插入),然后排序找一找即可。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e6 + 10, MAXA = 1e4 + 10;
int t, n, book[MAXA], fir, sec, d[MAXN];
double ans;
int read()
{
int sum = 0, fh = 1; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') fh = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {sum = (sum << 3) + (sum << 1) + (ch ^ 48); ch = getchar();}
return sum * fh;
}
int main()
{
t = read();
while (t--)
{
memset(book, 0, sizeof(book));
fir = sec = 0; ans = 2147483647.0;
n = read(); d[0] = 0;
for (int i = 1; i <= n; ++i)
{
int tmp = read(); book[tmp]++;
if (!(book[tmp] & 1)) d[++d[0]] = tmp;
}
sort(d + 1, d + d[0] + 1);
for (int i = 1; i < d[0]; ++i)
{
double k = (double)4 * ((double)d[i] / d[i + 1] + (double)d[i + 1] / d[i]) + 8.0;
if (k < ans)
{
ans = k; fir = d[i]; sec = d[i + 1];
}
}
printf("%d %d %d %d\n", fir, fir, sec, sec);
}
return 0;
}