LOJ 3089: 洛谷 P5319: 「BJOI2019」奥术神杖

题目传送门:LOJ #3089

题意简述:

有一个长度为 \(n\) 的母串,其中某些位置已固定,另一些位置可以任意填。

同时给定 \(m\) 个小串,第 \(i\) 个为 \(S_i\),所有位置都已固定,它的价值为 \(V_i\)

每次每个小串在母串中出现一次,便会给答案的多重集贡献一个 \(V_i\)

最终的答案为多重集的几何平均数,定义空集的几何平均数为 \(1\)

请你求出一个合法母串(往可以填的位置填合法字符)使得答案最大。

\(1\le n,s\le 1501\)\(1\le V_i\le \max V=10^9\),其中 \(\displaystyle s=\sum_{i=1}^{m}|S_i|\)

题解:

假设多重集的大小为 \(c\),第 \(i\) 个元素为 \(w_i\),则 \(\displaystyle\mathrm{Ans}=\sqrt[c]{\prod_{i=1}^{c}w_i}\)

两边取对数,有 \(\displaystyle\ln\mathrm{Ans}=\frac{1}{c}\sum_{i=1}^{c}\ln w_i\),转化为经典的 0/1 分数规划问题。

二分答案,若等式右边大于 \(\mathrm{mid}\),则有:

\(\begin{aligned}\frac{1}{c}\sum_{i=1}^{c}\ln w_i&>\mathrm{mid}\\\sum_{i=1}^{c}\ln w_i&>c\cdot\mathrm{mid}\\\sum_{i=1}^{c}(\ln w_i-\mathrm{mid})&>0\end{aligned}\)

所以,建出小串的 AC 自动机,然后二分答案后在 AC 自动机上 DP 判断不等式是否满足。

DP 时每个小串的权值设为 \(\ln V_i-\mathrm{mid}\),注意要记录最佳转移点,以输出方案。

下面是代码,复杂度 \(\mathcal{O}(n s \Sigma \log \log(\epsilon^{-1} \max V))\)

#include <cstdio>
#include <cmath>

typedef double f64;
const int MN = 1505, Sig = 10;
const f64 eps = 1e-6, inf = 1e99;

int N, M;
char T[MN];

char str[MN];
int ch[MN][Sig], fail[MN], sum[MN], cnt;
f64 val[MN];

inline void Insert(char *s, f64 v) {
	int now = 0;
	for (; *s; ++s) {
		if (!ch[now][*s & 15]) ch[now][*s & 15] = ++cnt;
		now = ch[now][*s & 15];
	} ++sum[now], val[now] += v;
}

int que[MN], l, r;
void BuildAC() {
	fail[0] = -1;
	que[l = r = 1] = 0;
	while (l <= r) {
		int u = que[l++];
		for (int i = 0; i < Sig; ++i) {
			if (ch[u][i]) {
				int x = fail[u];
				while (~x && !ch[x][i]) x = fail[x];
				if (~x) fail[ch[u][i]] = ch[x][i];
				que[++r] = ch[u][i];
			}
			else if (~fail[u]) ch[u][i] = ch[fail[u]][i];
		}
	}
	for (int i = 2; i <= r; ++i)
		sum[que[i]] += sum[fail[que[i]]],
		val[que[i]] += val[fail[que[i]]];
}

f64 f[MN][MN];
int g[MN][MN][2];
char AT[MN];
inline f64 DP(f64 V) {
	for (int j = 0; j <= cnt; ++j) val[j] -= sum[j] * V;
	for (int i = 0; i <= N; ++i)
		for (int j = 0; j <= cnt; ++j)
			f[i][j] = -inf;
	f[0][0] = 0;
	for (int i = 0; i < N; ++i) {
		for (int j = 0; j <= cnt; ++j) {
			if (f[i][j] == -inf) continue;
			if (T[i] == '.') {
				for (int k = 0; k < Sig; ++k) {
					int _j = ch[j][k];
					if (f[i + 1][_j] < f[i][j] + val[_j])
						f[i + 1][_j] = f[i][j] + val[_j],
						g[i + 1][_j][0] = j,
						g[i + 1][_j][1] = k;
				}
			}
			else {
				int _j = ch[j][T[i] & 15];
				if (f[i + 1][_j] < f[i][j] + val[_j])
					f[i + 1][_j] = f[i][j] + val[_j],
					g[i + 1][_j][0] = j,
					g[i + 1][_j][1] = T[i] & 15;
			}
		}
	}
	for (int j = 0; j <= cnt; ++j) val[j] += sum[j] * V;
	int ans = 0;
	for (int j = 1; j <= cnt; ++j)
		if (f[N][j] > f[N][ans]) ans = j;
	for (int i = N, j = ans; i >= 1; --i)
		AT[i - 1] = g[i][j][1] | 48,
		j = g[i][j][0];
	return f[N][ans];
}

int main() {
	scanf("%d%d", &N, &M);
	scanf("%s", T);
	for (int i = 1; i <= M; ++i) {
		f64 v;
		scanf("%s%lf", str, &v);
		Insert(str, log(v));
	}
	BuildAC();
	f64 l = 0, r = log(1e9 + 5), mid, ans = 0;
	while (r - l > eps) {
		mid = (l + r) / 2;
		if (DP(mid) > 0) ans = mid, l = mid;
		else r = mid;
	}
	DP(ans);
	printf("%s\n", AT);
	return 0;
}
posted @ 2019-04-27 21:13  粉兔  阅读(655)  评论(0编辑  收藏  举报