洛谷 P5564: [Celeste-B]Say Goodbye

题目传送门:洛谷 P5564

题意简述:

\(n\) 个点,染 \(m\) 种颜色,第 \(i\) 种颜色染恰好 \(cnt_i\) 个节点,满足 \(cnt_1+cnt_2+\cdots+cnt_m=n\)

求这 \(n\) 个点组成的本质不同无标号+有序(子树有序)基环(环长至少为 \(2\))树个数。

两棵基环树本质相同当且仅当通过环的旋转(不能翻转)后能使得它们完全相同。

题解:

首先考虑只染一种颜色的 \(n\) 个点(\(n\ge1\))的无标号有根有序树个数计数。
考虑这棵树的括号序,发现其括号序是长度为 \(n\) 的合法括号串,但是必须满足最外层括号(根节点)只有一对。
\(n\) 个点的有根有序树个数为 \(n-1\) 对括号组成的合法括号串,即第 \(n-1\) 个卡特兰数。
\(n\) 个点的有根有序树个数为 \(t_n\),令其 OGF 为 \(\displaystyle T=\sum_{i=1}^{+\infty}t_ix^i\),即 \(T=xC\),其中 \(C\) 为卡特兰数的 OGF。

再考虑染色的问题,不难发现只要有序,则染色和树形态是相互独立的。
即只要乘上一个多重组合数 \(\displaystyle\binom{n}{cnt_1,cnt_2,\ldots,cnt_m}\) 即可。


回到原问题,枚举环长 \(k\),使用 Burnside 引理统计等价类个数。环的旋转置换的统计方法是常见的,即枚举因数 \(d\),等价于循环 \(d\) 格的置换个数为 \(\varphi\!\left(\dfrac{k}{d}\right)\)。则有:

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi\!\left(\dfrac{k}{d}\right)\!\cdot f(d)\end{aligned} \]

其中 \(f(d)\) 表示循环 \(d\) 格时的不动点个数。

循环 \(d\) 格时,存在 \(d\) 个长度为 \(\dfrac{k}{d}\) 的循环,循环内的每个元素都代表一棵外向树。为了方便进一步的展开,交换 \(d\)\(\dfrac{k}{d}\) 的意义,枚举 \(d\) 为循环长度,而 \(\dfrac{k}{d}\) 为循环个数。此时每个循环内的树形态相互独立,而且染色和树形态相互独立,但每个循环的树形态必须相同,且染色也必须相同,也就是说有 \(\dfrac{k}{d}\) 棵树,且总点数为 \(\dfrac{n}{d}\),并且需要满足每种颜色的个数是 \(d\) 的倍数,即 \(\left.d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right.\)。则公式变为:

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot f\!\left(\dfrac{k}{d}\right)\!\\&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\end{aligned} \]

此时有两条路可走,其一是留下生成函数 \(T\) 的形式不变,其二是考虑使用卡特兰数的性质。

先使用第一种做法,考虑交换求和顺序并改变求和指标 \(k\)\(kd\)

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\varphi(d)\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!\sum_{k=1}^{n/d}\frac{T^k}{kd}\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!\sum_{k=1}^{+\infty}\frac{T^k}{k}\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\cdot\!\left[x^{n/d}\right]\!(-\ln(1-T))\end{aligned} \]

第二行的第一项是因为后面统计了 \(d=k=1\) 的情况,但是实际不需要,所以要减掉。
最后一行利用了 \(\ln\)\(1\) 处展开的的泰勒级数:\(\displaystyle\ln(1-x)=-\sum_{i=1}^{+\infty}\frac{x^i}{i}\)
先使用多项式对数函数计算出 \(-\ln(1-T)\),按照此式直接计算即可。时间复杂度 \(\mathcal{O}(n\log n+\sigma_0(n)\cdot m)\)


第二种做法是考虑卡特兰数和自身的 \(m\) 次卷积的第 \(n\) 项的通项。

有公式 \(\displaystyle[x^n]C^m=\binom{2n+m-1}{n}-\binom{2n+m-1}{n-1}\),将此式代入可得:

\[\begin{aligned}\mathbf{Ans}&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left[x^{n/d}\right]\!T^{k/d}\cdot\binom{n/d}{cnt_1/d,cnt_2/d,\ldots,cnt_m/d}\right\}\!\\&=\sum_{k=2}^{n}\dfrac{1}{k}\sum_{d|k}\varphi(d)\cdot\!\left\{\!\left[d\:\middle|\:\gcd\limits_{i=1}^{m}cnt_i\right]\!\cdot\!\left(\binom{2n/d-k/d-1}{2n/d-2k/d}-\binom{2n/d-k/d-1}{2n/d-2k/d-1}\right)\!\cdot\binom{n/d}{cnt_{1\ldots m}/d}\right\}\!\\&=-t_n\binom{n}{cnt_{1\ldots m}}+\sum_{d\mid\gcd_{i=1}^{m}cnt_i}\frac{\varphi(d)}{d}\cdot\binom{n/d}{cnt_{1\ldots m}/d}\sum_{k=1}^{n/d}\frac{1}{k}\!\left(\binom{2n/d-k-1}{2n/d-2k}-\binom{2n/d-k-1}{2n/d-2k-1}\right)\!\end{aligned} \]

直接计算即可,复杂度 \(\mathcal{O}(\sigma_0(n)(n+m))\)

posted @ 2019-09-16 10:15  粉兔  阅读(628)  评论(1编辑  收藏  举报