deepfake 资源总结

 

1. https://zhuanlan.zhihu.com/p/34042498   深度解密换脸应用Deepfake

2. 在 1 里面提到的PixelShuffle,具体见参考3:

https://mathematica.stackexchange.com/questions/181587/how-to-define-a-pixelshuffle-layer

一边Upsample一边Convolve:Efficient Sub-pixel-convolutional-layers详解

https://oldpan.me/archives/upsample-convolve-efficient-sub-pixel-convolutional-layers

正常情况下,卷积操作会使feature map的高和宽变小。但当我们的stride=(1/r) < 1时,可以让卷积后的feature map的高和宽变大——即分辨率增大,这个新的操作叫做sub-pixel convolution,具体原理可以看PixelShuffle《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
》的论文。

pixelshuffle算法的实现流程如上图,其实现的功能是:将一个H×W的低分辨率输入图像(LowResolution),通过Sub-pixel操作将其变为rH x rW的高分辨率图像(High Resolution)。

在1中提到的PG-GAN

3. http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf

4. PyTorch学习笔记(10)——上采样和PixelShuffle

https://blog.csdn.net/g11d111/article/details/82855946

5. faceswap blog

https://blog.csdn.net/weixin_41965898/article/details/84930788

参考:

1. CNN概念之上采样,反卷积,Unpooling概念解释 

https://blog.csdn.net/g11d111/article/details/82350563

2. Visualizing and Understanding Convolutional Networks

https://arxiv.org/pdf/1311.2901v3.pdf

3. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

【这篇文章的核心—Efficient Sub-pixel Convolution】

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf

4.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf

5【超分辨率】Efficient Sub-Pixel Convolutional Neural Network【Sub-Pixel / PS: periodic shuffling】

https://blog.csdn.net/shwan_ma/article/details/78440394

6. PixelShuffle的含义

 
posted @   瘋耔  阅读(1789)  评论(0编辑  收藏  举报
努力加载评论中...
跳至侧栏
点击右上角即可分享
微信分享提示