[赛记] 多校A层冲刺NOIP2024模拟赛24

选取字符串 60pts

直接暴力60pts;

这题难点在于读懂题把。。。

考虑建出 $ KMP $ 树,然后在其中选出 $ k $ 个数,他们的 $ LCA $ 的深度的平方和就是这个答案,然后简单统计一下即可;

具体地,把 $ KMP $ 树建出来,然后求每 $ k $ 个点的 $ LCA $ 的深度的平方和即可,最后乘上方案数(总的减去每棵子树的);

直接枚举 $ LCA $ 即可;

时间复杂度:$ \Theta(n) $;

点击查看代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const long long mod = 998244353;
int k;
int n;
char s[1000005];
long long fac[1000005], fav[1000005];
inline long long ksm(long long a, long long b) {
	long long ans = 1;
	while(b) {
		if (b & 1) ans = ans * a % mod;
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}
inline long long C(long long a, long long b) {
	if (a < b) return 0;
	if (b < 0) return 0;
	return fac[a] * fav[b] % mod * fav[a - b] % mod;
}
long long ans;
int pi[1000005];
struct sss{
	int t, ne;
}e[2000005];
int h[2000005], cnt;
inline void add(int u, int v) {
	e[++cnt].t = v;
	e[cnt].ne = h[u];
	h[u] = cnt;
}
inline void KMP() {
	int j = 0;
	add(0, 1);
	for (int i = 2; i <= n; i++) {
		while(j && s[i] != s[j + 1]) j = pi[j];
		if (s[i] == s[j + 1]) j++;
		pi[i] = j;
		add(j, i);
	}
}
int dep[1000005], siz[1000005];
long long sum[1000005];
void dfs(int x, int de) {
	dep[x] = de;
	siz[x] = 1;
	for (int i = h[x]; i; i = e[i].ne) {
		int u = e[i].t;
		dfs(u, de + 1);
		siz[x] += siz[u];
		sum[x] = (sum[x] + C(siz[u], k)) % mod;
	}
}
int main() {
	freopen("string.in", "r", stdin);
	freopen("string.out", "w", stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> k;
	cin >> (s + 1);
	n = strlen(s + 1);
	fac[0] = 1;
	fav[0] = 1;
	for (int i = 1; i <= n + 1; i++) {
		fac[i] = fac[i - 1] * i % mod;
		fav[i] = ksm(fac[i], mod - 2);
	}
	KMP();
	dfs(0, 1);
	for (int i = 0; i <= n; i++) {
		if (siz[i] < k) continue;
		long long res = (C(siz[i], k) - sum[i] + mod) % mod;
		ans = (ans + res * dep[i] % mod * dep[i] % mod) % mod;
	}
	cout << ans;
	return 0;
}

取石子 10pts

考虑如果是有奇数个,那么直接取 $ 1 $ 个先手必胜;

那么扩展一下,发现我们先求出异或和 $ sum $ ,然后如果 $ lowbit(sum) \leq k $ 那么我们就能选这一位,然后累加继续判断,否则直接 $ break $ 即可;

我们对于每个数都进行一边这个操作,时间复杂度 $ \Theta(n \log w) $,其中 $ w $ 为值域;

具体看代码;

点击查看代码
#include <iostream>
#include <cstdio>
using namespace std;
int n, k;
int a[100005];
int main() {
	freopen("nim.in", "r", stdin);
	freopen("nim.out", "w", stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> k;
	int sum = 0;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		sum ^= a[i];
	}
	if (!sum || (sum & (-sum)) > k) {
		cout << 0;
		return 0;
	}
	cout << 1 << '\n';
	for (int i = 1; i <= n; i++) {
		int p = 0;
		int now = sum;
		for (int j = 0; j <= 30; j++) {
			if ((now >> j) & 1) {
				now ^= (a[i] - p);
				p += (1 << j);
				if (p > a[i] || p > k) break;
				now ^= (a[i] - p);
				cout << i << ' ' << p << '\n';
			}
		}
	}
	return 0;
}

均衡区间 0pts

赛时想出正解然后全RE,ACCODERS上还被卡常了。。。

我们先维护出一个数前面和后面第一个小于它的和大于它的,这个可以单调栈维护;

主要讲一下这个单调栈,这里用线段树会T掉;

我们维护一个单调递增的栈,然后栈顶就是第一个小于它的,反之同理;

考虑为什么是对的,因为这样会将中间的小于它的全丢掉,这些数对后面的没有贡献,而且这样会尽可能的将最值往后移,所以是对的;

考虑后面的操作,我们发现,对于一个数 $ a_i $,设它后面的最大的第一个小于它的和大于它的的最大的位置为 $ R_i $,前面的为 $ L_i $,当它做左端点时,只有它满足题意的对应的右端点范围为 $ [R_i + 1, n] $,反之如果它做右端点,只有它满足题意的左端点的范围为 $ [1, L_i - 1] $,那么我们要找两者都满足条件的,直接将这些区间排序后上扫描线即可;

扫描线部分具体看代码;

时间复杂度:$ \Theta(n \log n) $;

点击查看代码
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
#define FI(n) FastIO::read(n)
#define FO(n) FastIO::write(n)
#define Flush FastIO::Fflush()
namespace FastIO {
    const int SIZE = 1 << 16;
    char buf[SIZE], obuf[SIZE], str[60];
    int bi = SIZE, bn = SIZE, opt;
    inline int read(register char *s) {
        while(bn) {
            for (; bi < bn && buf[bi] <= ' '; bi = -~bi);
            if (bi < bn) break;
            bn = fread(buf, 1, SIZE, stdin);
            bi &= 0;
        }
        register int sn=0;
        while(bn) {
            for (; bi < bn && buf[bi] > ' '; bi = -~bi) s[sn++] = buf[bi];
            if(bi < bn) break;
            bn = fread(buf,1,SIZE,stdin);
            bi &= 0;
        }
        s[sn] &= 0;
        return sn;
    }
    inline bool read(register int &x){
        int n = read(str), bf = 0;
        if(!n) return 0;
        register int i=0;
        (str[i] == '-') && (bf = 1, i = -~i);
		(str[i] == '+') && (i = -~i);
        for (x = 0; i < n; i = -~i) x = (x << 3) + (x << 1) + (str[i] ^ 48);
        bf && (x = ~x + 1);
        return 1;
    }
    inline bool read(register long long &x) {
        int n = read(str), bf = 1;
        if(!n) return 0;
        register int i=0;
        (str[i] == '-') && (bf = -1,i = -~i);
        for (x = 0; i < n; i= -~i) x = (x << 3) + (x << 1) + (str[i] ^ 48);
        (bf < 0) && (x = ~x + 1);
        return 1;
    }
    inline void write(register int x) {
        if(!x) obuf[opt++] = '0';
        else {
            (x < 0) && (obuf[opt++] = '-', x = ~x + 1);
            register int sn = 0;
            while(x) str[sn++] = x % 10 + '0', x /= 10;
            for (register int i = sn - 1; i >= 0; i = ~-i) obuf[opt++] = str[i];
        }
        (opt >= (SIZE >> 1)) && (fwrite(obuf, 1, opt, stdout), opt &= 0);
    }
    inline void write(register long long x) {
        if(!x) obuf[opt++] = '0';
        else {
            (x < 0) && (obuf[opt++] = '-', x = ~x + 1);
            register int sn = 0;
            while(x) str[sn++] = x % 10 + '0', x /= 10;
            for (register int i = sn - 1; i >= 0; i = ~-i) obuf[opt++] = str[i];
        }
        (opt >= (SIZE >> 1)) && (fwrite(obuf, 1, opt, stdout), opt &= 0);
    }
    inline void write(register unsigned long long x){
        if(!x) obuf[opt++] = '0';
        else {
            register int sn=0;
            while(x) str[sn++] = x % 10 + '0', x /= 10;
            for (register int i = sn - 1 ; i >= 0 ; i = ~-i)obuf[opt++] = str[i];
        }
        (opt >= (SIZE >> 1)) && (fwrite(obuf, 1, opt, stdout), opt &= 0);
    }
    inline void write(register char x) {
        obuf[opt++] = x;
        (opt >= (SIZE >> 1)) && (fwrite(obuf, 1, opt, stdout), opt &= 0);
    }
    inline void Fflush(){
        opt && fwrite(obuf, 1, opt, stdout);
        opt &= 0;
    }
}
int n, id;
int a[1000005], ans[1000005];
pair<int, int> L[1000005], R[1000005];
struct sss{
	int l, r;
}e[1000005];
namespace BIT{
	inline int lowbit(int x) {
		return x & (-x);
	}
	int tr[1000005];
	inline void add(int pos, int d) {
		for (int i = pos; i <= n; i += lowbit(i)) tr[i] += d;
	}
	inline int ask(int pos) {
		int an = 0;
		for (int i = pos; i; i -= lowbit(i)) an += tr[i];
		return an;
	}
}
int st[1000005], s[1000005], cnt, tot;
int main() {
	freopen("interval.in", "r", stdin);
	freopen("interval.out", "w", stdout);
	FI(n); FI(id);
	for (int i = 1; i <= n; i++) {
		FI(a[i]);
	}
	for (int i = 1; i <= n; i++) {
		while(cnt > 0 && a[i] <= a[st[cnt]]) cnt--;
		while(tot > 0 && a[i] >= a[s[tot]]) tot--;
		e[i].r = min(st[cnt], s[tot]);
		st[++cnt] = i;
		s[++tot] = i;
	}
	cnt = tot = 0;
	for (int i = n; i >= 1; i--) {
		while(cnt > 0 && a[i] <= a[st[cnt]]) cnt--;
		while(tot > 0 && a[i] >= a[s[tot]]) tot--;
		e[i].l = max(st[cnt], s[tot]);
		if (cnt == 0 || tot == 0) e[i].l = 2e9;
		st[++cnt] = i;
		s[++tot] = i;
	}
	for (int i = 1; i <= n; i++) {
		L[i] = {e[i].l, i};
		R[i] = {e[i].r, i};
	}
	sort(L + 1, L + 1 + n, greater<pair<int, int> >());
	sort(R + 1, R + 1 + n);
	for (int i = 1; i <= n; i++) BIT::add(i, 1);
	int now = 1;
	for (int i = 1; i <= n; i++) {
		while(now <= n && R[now].first < i) {
			BIT::add(R[now].second, -1);
			now++;
		}
		if (e[i].l > n) FO(0);
		else FO(BIT::ask(n) - BIT::ask(e[i].l - 1));
		FO(' ');
	}
	FO('\n');
	while(now <= n) BIT::add(R[now].second, -1);
	now = 1;
	for (int i = 1; i <= n; i++) BIT::add(i, 1);
	for (int i = n; i >= 1; i--) {
		while(now <= n && L[now].first > i) {
			BIT::add(L[now].second, -1);
			now++;
		}
		if (e[i].r < 1) continue;
		ans[i] = BIT::ask(e[i].r);
	}
	for (int i = 1; i <= n; i++) {
		FO(ans[i]);
		FO(' ');
	}
	Flush;
	return 0;
}
posted @ 2024-11-19 21:42  Peppa_Even_Pig  阅读(17)  评论(0编辑  收藏  举报