Python学习第三天
Set集合:
不允许有重复的元素。正如Hash表。创建一个Set的对象:set()
应用(网络爬虫) 优点:访问速度快、解决重复问题
每个set对象都有以下功能:
1 class set(object): 2 """ 3 set() -> new empty set object 4 set(iterable) -> new set object 5 6 Build an unordered collection of unique elements. 7 """ 8 def add(self, *args, **kwargs): # real signature unknown 9 """ 添加 """ 10 """ 11 Add an element to a set. 12 13 This has no effect if the element is already present. 14 """ 15 pass 16 17 def clear(self, *args, **kwargs): # real signature unknown 18 """ Remove all elements from this set. """ 19 pass 20 21 def copy(self, *args, **kwargs): # real signature unknown 22 """ Return a shallow copy of a set. """ 23 pass 24 25 def difference(self, *args, **kwargs): # real signature unknown 26 """ 27 Return the difference of two or more sets as a new set. 28 29 (i.e. all elements that are in this set but not the others.) 30 """ 31 pass 32 33 def difference_update(self, *args, **kwargs): # real signature unknown 34 """ 删除当前set中的所有包含在 new set 里的元素 """ 35 """ Remove all elements of another set from this set. """ 36 pass 37 38 def discard(self, *args, **kwargs): # real signature unknown 39 """ 移除元素 """ 40 """ 41 Remove an element from a set if it is a member. 42 43 If the element is not a member, do nothing. 44 """ 45 pass 46 47 def intersection(self, *args, **kwargs): # real signature unknown 48 """ 取交集,新创建一个set """ 49 """ 50 Return the intersection of two or more sets as a new set. 51 52 (i.e. elements that are common to all of the sets.) 53 """ 54 pass 55 56 def intersection_update(self, *args, **kwargs): # real signature unknown 57 """ 取交集,修改原来set """ 58 """ Update a set with the intersection of itself and another. """ 59 pass 60 61 def isdisjoint(self, *args, **kwargs): # real signature unknown 62 """ 如果没有交集,返回true """ 63 """ Return True if two sets have a null intersection. """ 64 pass 65 66 def issubset(self, *args, **kwargs): # real signature unknown 67 """ 是否是子集 """ 68 """ Report whether another set contains this set. """ 69 pass 70 71 def issuperset(self, *args, **kwargs): # real signature unknown 72 """ 是否是父集 """ 73 """ Report whether this set contains another set. """ 74 pass 75 76 def pop(self, *args, **kwargs): # real signature unknown 77 """ 移除 """ 78 """ 79 Remove and return an arbitrary set element. 80 Raises KeyError if the set is empty. 81 """ 82 pass 83 84 def remove(self, *args, **kwargs): # real signature unknown 85 """ 移除 """ 86 """ 87 Remove an element from a set; it must be a member. 88 89 If the element is not a member, raise a KeyError. 90 """ 91 pass 92 93 def symmetric_difference(self, *args, **kwargs): # real signature unknown 94 """ 差集,创建新对象""" 95 """ 96 Return the symmetric difference of two sets as a new set. 97 98 (i.e. all elements that are in exactly one of the sets.) 99 """ 100 pass 101 102 def symmetric_difference_update(self, *args, **kwargs): # real signature unknown 103 """ 差集,改变原来 """ 104 """ Update a set with the symmetric difference of itself and another. """ 105 pass 106 107 def union(self, *args, **kwargs): # real signature unknown 108 """ 并集 """ 109 """ 110 Return the union of sets as a new set. 111 112 (i.e. all elements that are in either set.) 113 """ 114 pass 115 116 def update(self, *args, **kwargs): # real signature unknown 117 """ 更新 """ 118 """ Update a set with the union of itself and others. """ 119 pass 120 121 def __and__(self, y): # real signature unknown; restored from __doc__ 122 """ x.__and__(y) <==> x&y """ 123 pass 124 125 def __cmp__(self, y): # real signature unknown; restored from __doc__ 126 """ x.__cmp__(y) <==> cmp(x,y) """ 127 pass 128 129 def __contains__(self, y): # real signature unknown; restored from __doc__ 130 """ x.__contains__(y) <==> y in x. """ 131 pass 132 133 def __eq__(self, y): # real signature unknown; restored from __doc__ 134 """ x.__eq__(y) <==> x==y """ 135 pass 136 137 def __getattribute__(self, name): # real signature unknown; restored from __doc__ 138 """ x.__getattribute__('name') <==> x.name """ 139 pass 140 141 def __ge__(self, y): # real signature unknown; restored from __doc__ 142 """ x.__ge__(y) <==> x>=y """ 143 pass 144 145 def __gt__(self, y): # real signature unknown; restored from __doc__ 146 """ x.__gt__(y) <==> x>y """ 147 pass 148 149 def __iand__(self, y): # real signature unknown; restored from __doc__ 150 """ x.__iand__(y) <==> x&=y """ 151 pass 152 153 def __init__(self, seq=()): # known special case of set.__init__ 154 """ 155 set() -> new empty set object 156 set(iterable) -> new set object 157 158 Build an unordered collection of unique elements. 159 # (copied from class doc) 160 """ 161 pass 162 163 def __ior__(self, y): # real signature unknown; restored from __doc__ 164 """ x.__ior__(y) <==> x|=y """ 165 pass 166 167 def __isub__(self, y): # real signature unknown; restored from __doc__ 168 """ x.__isub__(y) <==> x-=y """ 169 pass 170 171 def __iter__(self): # real signature unknown; restored from __doc__ 172 """ x.__iter__() <==> iter(x) """ 173 pass 174 175 def __ixor__(self, y): # real signature unknown; restored from __doc__ 176 """ x.__ixor__(y) <==> x^=y """ 177 pass 178 179 def __len__(self): # real signature unknown; restored from __doc__ 180 """ x.__len__() <==> len(x) """ 181 pass 182 183 def __le__(self, y): # real signature unknown; restored from __doc__ 184 """ x.__le__(y) <==> x<=y """ 185 pass 186 187 def __lt__(self, y): # real signature unknown; restored from __doc__ 188 """ x.__lt__(y) <==> x<y """ 189 pass 190 191 @staticmethod # known case of __new__ 192 def __new__(S, *more): # real signature unknown; restored from __doc__ 193 """ T.__new__(S, ...) -> a new object with type S, a subtype of T """ 194 pass 195 196 def __ne__(self, y): # real signature unknown; restored from __doc__ 197 """ x.__ne__(y) <==> x!=y """ 198 pass 199 200 def __or__(self, y): # real signature unknown; restored from __doc__ 201 """ x.__or__(y) <==> x|y """ 202 pass 203 204 def __rand__(self, y): # real signature unknown; restored from __doc__ 205 """ x.__rand__(y) <==> y&x """ 206 pass 207 208 def __reduce__(self, *args, **kwargs): # real signature unknown 209 """ Return state information for pickling. """ 210 pass 211 212 def __repr__(self): # real signature unknown; restored from __doc__ 213 """ x.__repr__() <==> repr(x) """ 214 pass 215 216 def __ror__(self, y): # real signature unknown; restored from __doc__ 217 """ x.__ror__(y) <==> y|x """ 218 pass 219 220 def __rsub__(self, y): # real signature unknown; restored from __doc__ 221 """ x.__rsub__(y) <==> y-x """ 222 pass 223 224 def __rxor__(self, y): # real signature unknown; restored from __doc__ 225 """ x.__rxor__(y) <==> y^x """ 226 pass 227 228 def __sizeof__(self): # real signature unknown; restored from __doc__ 229 """ S.__sizeof__() -> size of S in memory, in bytes """ 230 pass 231 232 def __sub__(self, y): # real signature unknown; restored from __doc__ 233 """ x.__sub__(y) <==> x-y """ 234 pass 235 236 def __xor__(self, y): # real signature unknown; restored from __doc__ 237 """ x.__xor__(y) <==> x^y """ 238 pass 239 240 __hash__ = None 241 242 set
(1) add()添加一个元素 clear():清空元素
s1=set() s1.add('alex') print(s1) {'alex'}
(2) difference():
s2=set([‘alex’,’eric’,’tony’]) s3=s2.difference([‘alex’,’eric’]) print(s3) {'tony'}
(3)difference_update():删除当前set中的所有包含在参数集合里的元素
s2=(['alex','eric','tony']) print(s2) s4=s2.difference_update([‘alex’,’eric’])#删除当前set中的所有包含在参数集合里的元素 print(s2) print(s4) {'alex', 'tony', 'eric'} {'tony'} None
(4)intersection():取交集,新创建一个set。 isdisjoint():如果没有交集,返回true。 issubset():是否是子集。
(5)pop()移除
s2=(['alex','eric','tony']) print(s2) ret=s2.pop() print(ret) {'alex','eric'}
(6)remove():只去拿不会获取,没有返回值
s2=(['alex','eric','tony']) print(s2) ret=s2.remove('tony') print(ret) {'alex','eric'}
(7)intersection():交集,(两个字典里都有的话)可能不动也可能更新(要更新的数据)。symmetric_difference():1 差集,(原来的有,新的没有)要删除;2 差集,(原来的没有,新的有)要增加。
# 数据库中原有 old_dict = { "#1":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 }, "#2":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 }, "#3":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 } } # cmdb 新汇报的数据 new_dict = { "#1":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 800 }, "#3":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 }, "#4":{ 'hostname':'c2', 'cpu_count': 2, 'mem_capicity': 80 } } old=set(old_dict.keys()) new=set(new_dict.keys()) updateset=old.intersection(new) delete_set=old.symmetric_difference(updateset) add_set=new.symmetric_difference(updateset) print(updateset) print(delete_set) print(add_set) {'#1', '#3'} {'#2'} {'#4'}
collection系列
一、计数器(counter)
Counter是对字典类型的补充,用于追踪值的出现次数。
具备字典的所有功能和自己的功能:
具备的功能:
1 ######################################################################## 2 ### Counter 3 ######################################################################## 4 5 class Counter(dict): 6 '''Dict subclass for counting hashable items. Sometimes called a bag 7 or multiset. Elements are stored as dictionary keys and their counts 8 are stored as dictionary values. 9 10 >>> c = Counter('abcdeabcdabcaba') # count elements from a string 11 12 >>> c.most_common(3) # three most common elements 13 [('a', 5), ('b', 4), ('c', 3)] 14 >>> sorted(c) # list all unique elements 15 ['a', 'b', 'c', 'd', 'e'] 16 >>> ''.join(sorted(c.elements())) # list elements with repetitions 17 'aaaaabbbbcccdde' 18 >>> sum(c.values()) # total of all counts 19 20 >>> c['a'] # count of letter 'a' 21 >>> for elem in 'shazam': # update counts from an iterable 22 ... c[elem] += 1 # by adding 1 to each element's count 23 >>> c['a'] # now there are seven 'a' 24 >>> del c['b'] # remove all 'b' 25 >>> c['b'] # now there are zero 'b' 26 27 >>> d = Counter('simsalabim') # make another counter 28 >>> c.update(d) # add in the second counter 29 >>> c['a'] # now there are nine 'a' 30 31 >>> c.clear() # empty the counter 32 >>> c 33 Counter() 34 35 Note: If a count is set to zero or reduced to zero, it will remain 36 in the counter until the entry is deleted or the counter is cleared: 37 38 >>> c = Counter('aaabbc') 39 >>> c['b'] -= 2 # reduce the count of 'b' by two 40 >>> c.most_common() # 'b' is still in, but its count is zero 41 [('a', 3), ('c', 1), ('b', 0)] 42 43 ''' 44 # References: 45 # http://en.wikipedia.org/wiki/Multiset 46 # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html 47 # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm 48 # http://code.activestate.com/recipes/259174/ 49 # Knuth, TAOCP Vol. II section 4.6.3 50 51 def __init__(self, iterable=None, **kwds): 52 '''Create a new, empty Counter object. And if given, count elements 53 from an input iterable. Or, initialize the count from another mapping 54 of elements to their counts. 55 56 >>> c = Counter() # a new, empty counter 57 >>> c = Counter('gallahad') # a new counter from an iterable 58 >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping 59 >>> c = Counter(a=4, b=2) # a new counter from keyword args 60 61 ''' 62 super(Counter, self).__init__() 63 self.update(iterable, **kwds) 64 65 def __missing__(self, key): 66 """ 对于不存在的元素,返回计数器为0 """ 67 'The count of elements not in the Counter is zero.' 68 # Needed so that self[missing_item] does not raise KeyError 69 return 0 70 71 def most_common(self, n=None): 72 """ 数量大于等n的所有元素和计数器 """ 73 '''List the n most common elements and their counts from the most 74 common to the least. If n is None, then list all element counts. 75 76 >>> Counter('abcdeabcdabcaba').most_common(3) 77 [('a', 5), ('b', 4), ('c', 3)] 78 79 ''' 80 # Emulate Bag.sortedByCount from Smalltalk 81 if n is None: 82 return sorted(self.iteritems(), key=_itemgetter(1), reverse=True) 83 return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) 84 85 def elements(self): 86 """ 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """ 87 '''Iterator over elements repeating each as many times as its count. 88 89 >>> c = Counter('ABCABC') 90 >>> sorted(c.elements()) 91 ['A', 'A', 'B', 'B', 'C', 'C'] 92 93 # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 94 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) 95 >>> product = 1 96 >>> for factor in prime_factors.elements(): # loop over factors 97 ... product *= factor # and multiply them 98 >>> product 99 100 Note, if an element's count has been set to zero or is a negative 101 number, elements() will ignore it. 102 103 ''' 104 # Emulate Bag.do from Smalltalk and Multiset.begin from C++. 105 return _chain.from_iterable(_starmap(_repeat, self.iteritems())) 106 107 # Override dict methods where necessary 108 109 @classmethod 110 def fromkeys(cls, iterable, v=None): 111 # There is no equivalent method for counters because setting v=1 112 # means that no element can have a count greater than one. 113 raise NotImplementedError( 114 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') 115 116 def update(self, iterable=None, **kwds): 117 """ 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """ 118 '''Like dict.update() but add counts instead of replacing them. 119 120 Source can be an iterable, a dictionary, or another Counter instance. 121 122 >>> c = Counter('which') 123 >>> c.update('witch') # add elements from another iterable 124 >>> d = Counter('watch') 125 >>> c.update(d) # add elements from another counter 126 >>> c['h'] # four 'h' in which, witch, and watch 127 128 ''' 129 # The regular dict.update() operation makes no sense here because the 130 # replace behavior results in the some of original untouched counts 131 # being mixed-in with all of the other counts for a mismash that 132 # doesn't have a straight-forward interpretation in most counting 133 # contexts. Instead, we implement straight-addition. Both the inputs 134 # and outputs are allowed to contain zero and negative counts. 135 136 if iterable is not None: 137 if isinstance(iterable, Mapping): 138 if self: 139 self_get = self.get 140 for elem, count in iterable.iteritems(): 141 self[elem] = self_get(elem, 0) + count 142 else: 143 super(Counter, self).update(iterable) # fast path when counter is empty 144 else: 145 self_get = self.get 146 for elem in iterable: 147 self[elem] = self_get(elem, 0) + 1 148 if kwds: 149 self.update(kwds) 150 151 def subtract(self, iterable=None, **kwds): 152 """ 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """ 153 '''Like dict.update() but subtracts counts instead of replacing them. 154 Counts can be reduced below zero. Both the inputs and outputs are 155 allowed to contain zero and negative counts. 156 157 Source can be an iterable, a dictionary, or another Counter instance. 158 159 >>> c = Counter('which') 160 >>> c.subtract('witch') # subtract elements from another iterable 161 >>> c.subtract(Counter('watch')) # subtract elements from another counter 162 >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch 163 >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch 164 -1 165 166 ''' 167 if iterable is not None: 168 self_get = self.get 169 if isinstance(iterable, Mapping): 170 for elem, count in iterable.items(): 171 self[elem] = self_get(elem, 0) - count 172 else: 173 for elem in iterable: 174 self[elem] = self_get(elem, 0) - 1 175 if kwds: 176 self.subtract(kwds) 177 178 def copy(self): 179 """ 拷贝 """ 180 'Return a shallow copy.' 181 return self.__class__(self) 182 183 def __reduce__(self): 184 """ 返回一个元组(类型,元组) """ 185 return self.__class__, (dict(self),) 186 187 def __delitem__(self, elem): 188 """ 删除元素 """ 189 'Like dict.__delitem__() but does not raise KeyError for missing values.' 190 if elem in self: 191 super(Counter, self).__delitem__(elem) 192 193 def __repr__(self): 194 if not self: 195 return '%s()' % self.__class__.__name__ 196 items = ', '.join(map('%r: %r'.__mod__, self.most_common())) 197 return '%s({%s})' % (self.__class__.__name__, items) 198 199 # Multiset-style mathematical operations discussed in: 200 # Knuth TAOCP Volume II section 4.6.3 exercise 19 201 # and at http://en.wikipedia.org/wiki/Multiset 202 # 203 # Outputs guaranteed to only include positive counts. 204 # 205 # To strip negative and zero counts, add-in an empty counter: 206 # c += Counter() 207 208 def __add__(self, other): 209 '''Add counts from two counters. 210 211 >>> Counter('abbb') + Counter('bcc') 212 Counter({'b': 4, 'c': 2, 'a': 1}) 213 214 ''' 215 if not isinstance(other, Counter): 216 return NotImplemented 217 result = Counter() 218 for elem, count in self.items(): 219 newcount = count + other[elem] 220 if newcount > 0: 221 result[elem] = newcount 222 for elem, count in other.items(): 223 if elem not in self and count > 0: 224 result[elem] = count 225 return result 226 227 def __sub__(self, other): 228 ''' Subtract count, but keep only results with positive counts. 229 230 >>> Counter('abbbc') - Counter('bccd') 231 Counter({'b': 2, 'a': 1}) 232 233 ''' 234 if not isinstance(other, Counter): 235 return NotImplemented 236 result = Counter() 237 for elem, count in self.items(): 238 newcount = count - other[elem] 239 if newcount > 0: 240 result[elem] = newcount 241 for elem, count in other.items(): 242 if elem not in self and count < 0: 243 result[elem] = 0 - count 244 return result 245 246 def __or__(self, other): 247 '''Union is the maximum of value in either of the input counters. 248 249 >>> Counter('abbb') | Counter('bcc') 250 Counter({'b': 3, 'c': 2, 'a': 1}) 251 252 ''' 253 if not isinstance(other, Counter): 254 return NotImplemented 255 result = Counter() 256 for elem, count in self.items(): 257 other_count = other[elem] 258 newcount = other_count if count < other_count else count 259 if newcount > 0: 260 result[elem] = newcount 261 for elem, count in other.items(): 262 if elem not in self and count > 0: 263 result[elem] = count 264 return result 265 266 def __and__(self, other): 267 ''' Intersection is the minimum of corresponding counts. 268 269 >>> Counter('abbb') & Counter('bcc') 270 Counter({'b': 1}) 271 272 ''' 273 if not isinstance(other, Counter): 274 return NotImplemented 275 result = Counter() 276 for elem, count in self.items(): 277 other_count = other[elem] 278 newcount = count if count < other_count else other_count 279 if newcount > 0: 280 result[elem] = newcount 281 return result 282 283 Counter
(1)Counter():分别计算各个字母出现的次数 elements():取出Counter中的所有Key值,items():显示所有的Keys和Values值。
1 import collections#导入 2 obj=collections.Counter('aabgoomabbblilifffgg')#分别计算各个字母出现的次数 3 print(obj) 4 ret=obj.most_common(4)#排在前4位的 5 print(ret) 6 for k in obj.elements(): 7 print(k) 8 for k,v in obj.items(): 9 print(k,v) 10 11 Counter({'b': 4, 'g': 3, 'a': 3, 'f': 3, 'i': 2, 'l': 2, 'o': 2, 'm': 1}) 12 [('b', 4), ('g', 3), ('a', 3), ('f', 3)] 13 i 14 i 15 g 16 g 17 g 18 b 19 b 20 b 21 b 22 l 23 l 24 o 25 o 26 a 27 a 28 a 29 m 30 f 31 f 32 f 33 i 2 34 g 3 35 b 4 36 l 2 37 o 2 38 a 3 39 m 1 40 f 3
(3)update():新增元素;subtract():删掉元素
1 import collections#导入 2 obj=collections.Counter(['11','22','22','33']) 3 print(obj) 4 obj.update(['eric','11','11']) 5 print(obj) 6 obj.subtract(['eric','11','11']) 7 print(obj) 8 9 Counter({'22': 2, '33': 1, '11': 1}) 10 Counter({'11': 3, '22': 2, 'eric': 1, '33': 1}) 11 Counter({'22': 2, '33': 1, '11': 1, 'eric': 0})
二、有序字典
orderdDict是对字典类型的补充,他记住了字典元素添加的顺序
class OrderedDict(dict): 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as regular dictionaries. # The internal self.__map dict maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # Each link is stored as a list of length three: [PREV, NEXT, KEY]. def __init__(self, *args, **kwds): '''Initialize an ordered dictionary. The signature is the same as regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__root = root = [] # sentinel node root[:] = [root, root, None] self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link at the end of the linked list, # and the inherited dictionary is updated with the new key/value pair. if key not in self: root = self.__root last = root[0] last[1] = root[0] = self.__map[key] = [last, root, key] return dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which gets # removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link_prev, link_next, _ = self.__map.pop(key) link_prev[1] = link_next # update link_prev[NEXT] link_next[0] = link_prev # update link_next[PREV] def __iter__(self): 'od.__iter__() <==> iter(od)' # Traverse the linked list in order. root = self.__root curr = root[1] # start at the first node while curr is not root: yield curr[2] # yield the curr[KEY] curr = curr[1] # move to next node def __reversed__(self): 'od.__reversed__() <==> reversed(od)' # Traverse the linked list in reverse order. root = self.__root curr = root[0] # start at the last node while curr is not root: yield curr[2] # yield the curr[KEY] curr = curr[0] # move to previous node def clear(self): 'od.clear() -> None. Remove all items from od.' root = self.__root root[:] = [root, root, None] self.__map.clear() dict.clear(self) # -- the following methods do not depend on the internal structure -- def keys(self): 'od.keys() -> list of keys in od' return list(self) def values(self): 'od.values() -> list of values in od' return [self[key] for key in self] def items(self): 'od.items() -> list of (key, value) pairs in od' return [(key, self[key]) for key in self] def iterkeys(self): 'od.iterkeys() -> an iterator over the keys in od' return iter(self) def itervalues(self): 'od.itervalues -> an iterator over the values in od' for k in self: yield self[k] def iteritems(self): 'od.iteritems -> an iterator over the (key, value) pairs in od' for k in self: yield (k, self[k]) update = MutableMapping.update __update = update # let subclasses override update without breaking __init__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') key = next(reversed(self) if last else iter(self)) value = self.pop(key) return key, value def __repr__(self, _repr_running={}): 'od.__repr__() <==> repr(od)' call_key = id(self), _get_ident() if call_key in _repr_running: return '...' _repr_running[call_key] = 1 try: if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.items()) finally: del _repr_running[call_key] def __reduce__(self): 'Return state information for pickling' items = [[k, self[k]] for k in self] inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. If not specified, the value defaults to None. ''' self = cls() for key in iterable: self[key] = value return self def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return dict.__eq__(self, other) and all(_imap(_eq, self, other)) return dict.__eq__(self, other) def __ne__(self, other): 'od.__ne__(y) <==> od!=y' return not self == other # -- the following methods support python 3.x style dictionary views -- def viewkeys(self): "od.viewkeys() -> a set-like object providing a view on od's keys" return KeysView(self) def viewvalues(self): "od.viewvalues() -> an object providing a view on od's values" return ValuesView(self) def viewitems(self): "od.viewitems() -> a set-like object providing a view on od's items" return ItemsView(self) OrderedDict
1 import collections 2 dic=collections.OrderedDict() 3 dic['k1']='v1' 4 dic['k2']='v2' 5 dic['k3']='v3' 6 print(dic) 7 8 OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
(1)move_to_end():移动到最后的位置。
import collections dic=collections.OrderedDict() dic['k1']='v1' dic['k2']='v2' dic['k3']='v3' dic.move_to_end('k1') print(dic) OrderedDict([('k2', 'v2'), ('k3', 'v3'), ('k1', 'v1')])
(2)popitem():删除最后放进的元素。(后进先出)
1 import collections 2 dic=collections.OrderedDict() 3 dic['k1']='v1' 4 dic['k2']='v2' 5 dic['k3']='v3' 6 print(dic) 7 dic.popitem() 8 print(dic) 9 10 OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')]) 11 OrderedDict([('k1', 'v1'), ('k2', 'v2')])
(3)update():更新添加
1 import collections 2 dic=collections.OrderedDict() 3 dic['k1']='v1' 4 dic['k2']='v2' 5 dic['k3']='v3' 6 print(dic) 7 dic.update({'k1':'v111','k10':'v10'}) 8 print(dic) 9 10 OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')]) 11 OrderedDict([('k1', 'v111'), ('k2', 'v2'), ('k3', 'v3'), ('k10', 'v10')])
三、默认字典
defaultdict是对字典的类型的补充,他默认给字典的值设置了一个类型。
class defaultdict(dict): """ defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce a new value when a key is not present, in __getitem__ only. A defaultdict compares equal to a dict with the same items. All remaining arguments are treated the same as if they were passed to the dict constructor, including keyword arguments. """ def copy(self): # real signature unknown; restored from __doc__ """ D.copy() -> a shallow copy of D. """ pass def __copy__(self, *args, **kwargs): # real signature unknown """ D.copy() -> a shallow copy of D. """ pass def __getattribute__(self, name): # real signature unknown; restored from __doc__ """ x.__getattribute__('name') <==> x.name """ pass def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__ """ defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce a new value when a key is not present, in __getitem__ only. A defaultdict compares equal to a dict with the same items. All remaining arguments are treated the same as if they were passed to the dict constructor, including keyword arguments. # (copied from class doc) """ pass def __missing__(self, key): # real signature unknown; restored from __doc__ """ __missing__(key) # Called by __getitem__ for missing key; pseudo-code: if self.default_factory is None: raise KeyError((key,)) self[key] = value = self.default_factory() return value """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling. """ pass def __repr__(self): # real signature unknown; restored from __doc__ """ x.__repr__() <==> repr(x) """ pass default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Factory for default value called by __missing__().""" defaultdict
(1)defaultdict():默认设置为字典。
1 dic=collections.defaultdict(list) 2 dic['k1'].append('alex') 3 print(dic) 4 5 defaultdict(<class 'list'>, {'k1': ['alex']})
练习:
有如下值集合 [
11
,
22
,
33
,
44
,
55
,
66
,
77
,
88
,
99
,
90.
..],将所有大于
66
的值保存至字典的第一个key中,将小于
66
的值保存至第二个key的值中。
即: {
'k1'
: 大于
66
,
'k2'
: 小于
66
}
1 values = [11, 22, 33,44,55,66,77,88,99,90] 2 3 my_dict = {} 4 5 for value in values: 6 if value>66: 7 if my_dict.has_key('k1'): 8 my_dict['k1'].append(value) 9 else: 10 my_dict['k1'] = [value] 11 else: 12 if my_dict.has_key('k2'): 13 my_dict['k2'].append(value) 14 else: 15 my_dict['k2'] = [value] 16 17 原生字典
1 from collections import defaultdict 2 3 values = [11, 22, 33,44,55,66,77,88,99,90] 4 5 my_dict = defaultdict(list) 6 7 for value in values: 8 if value>66: 9 my_dict['k1'].append(value) 10 else: 11 my_dict['k2'].append(value) 12 13 defaultdict字典解决方法 14 15 默认字典
四、可命名元组
根据nametuple可以创建一个包含tuple所有功能以及其他功能的类型。
1 import collections 2 mytupleclass=collections.namedtuple('mytupleclass',['x','y','z']) 3 obj=mytupleclass(11,22,33) 4 print(obj.x) 5 print(obj.y) 6 print(obj.z) 7 8 11 9 22 10 33
help(mytupleclass)#看类里头具有的功能
class Mytuple(__builtin__.tuple) | Mytuple(x, y) | | Method resolution order: | Mytuple | __builtin__.tuple | __builtin__.object | | Methods defined here: | | __getnewargs__(self) | Return self as a plain tuple. Used by copy and pickle. | | __getstate__(self) | Exclude the OrderedDict from pickling | | __repr__(self) | Return a nicely formatted representation string | | _asdict(self) | Return a new OrderedDict which maps field names to their values | | _replace(_self, **kwds) | Return a new Mytuple object replacing specified fields with new values | | ---------------------------------------------------------------------- | Class methods defined here: | | _make(cls, iterable, new=<built-in method __new__ of type object>, len=<built-in function len>) from __builtin__.type | Make a new Mytuple object from a sequence or iterable | | ---------------------------------------------------------------------- | Static methods defined here: | | __new__(_cls, x, y) | Create new instance of Mytuple(x, y) | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | Return a new OrderedDict which maps field names to their values | | x | Alias for field number 0 | | y | Alias for field number 1 | | ---------------------------------------------------------------------- | Data and other attributes defined here: | | _fields = ('x', 'y') | | ---------------------------------------------------------------------- | Methods inherited from __builtin__.tuple: | | __add__(...) | x.__add__(y) <==> x+y | | __contains__(...) | x.__contains__(y) <==> y in x | | __eq__(...) | x.__eq__(y) <==> x==y | | __ge__(...) | x.__ge__(y) <==> x>=y | | __getattribute__(...) | x.__getattribute__('name') <==> x.name | | __getitem__(...) | x.__getitem__(y) <==> x[y] | | __getslice__(...) | x.__getslice__(i, j) <==> x[i:j] | | Use of negative indices is not supported. | | __gt__(...) | x.__gt__(y) <==> x>y | | __hash__(...) | x.__hash__() <==> hash(x) | | __iter__(...) | x.__iter__() <==> iter(x) | | __le__(...) | x.__le__(y) <==> x<=y | | __len__(...) | x.__len__() <==> len(x) | | __lt__(...) | x.__lt__(y) <==> x<y | | __mul__(...) | x.__mul__(n) <==> x*n | | __ne__(...) | x.__ne__(y) <==> x!=y | | __rmul__(...) | x.__rmul__(n) <==> n*x | | __sizeof__(...) | T.__sizeof__() -- size of T in memory, in bytes | | count(...) | T.count(value) -> integer -- return number of occurrences of value | | index(...) | T.index(value, [start, [stop]]) -> integer -- return first index of value. | Raises ValueError if the value is not present. Mytuple
五、双向队列
双向队列
class deque(object): """ deque([iterable[, maxlen]]) --> deque object Build an ordered collection with optimized access from its endpoints. """ def append(self, *args, **kwargs): # real signature unknown """ Add an element to the right side of the deque. """ pass def appendleft(self, *args, **kwargs): # real signature unknown """ Add an element to the left side of the deque. """ pass def clear(self, *args, **kwargs): # real signature unknown """ Remove all elements from the deque. """ pass def count(self, value): # real signature unknown; restored from __doc__ """ D.count(value) -> integer -- return number of occurrences of value """ return 0 def extend(self, *args, **kwargs): # real signature unknown """ Extend the right side of the deque with elements from the iterable """ pass def extendleft(self, *args, **kwargs): # real signature unknown """ Extend the left side of the deque with elements from the iterable """ pass def pop(self, *args, **kwargs): # real signature unknown """ Remove and return the rightmost element. """ pass def popleft(self, *args, **kwargs): # real signature unknown """ Remove and return the leftmost element. """ pass def remove(self, value): # real signature unknown; restored from __doc__ """ D.remove(value) -- remove first occurrence of value. """ pass def reverse(self): # real signature unknown; restored from __doc__ """ D.reverse() -- reverse *IN PLACE* """ pass def rotate(self, *args, **kwargs): # real signature unknown """ Rotate the deque n steps to the right (default n=1). If n is negative, rotates left. """ pass def __copy__(self, *args, **kwargs): # real signature unknown """ Return a shallow copy of a deque. """ pass def __delitem__(self, y): # real signature unknown; restored from __doc__ """ x.__delitem__(y) <==> del x[y] """ pass def __eq__(self, y): # real signature unknown; restored from __doc__ """ x.__eq__(y) <==> x==y """ pass def __getattribute__(self, name): # real signature unknown; restored from __doc__ """ x.__getattribute__('name') <==> x.name """ pass def __getitem__(self, y): # real signature unknown; restored from __doc__ """ x.__getitem__(y) <==> x[y] """ pass def __ge__(self, y): # real signature unknown; restored from __doc__ """ x.__ge__(y) <==> x>=y """ pass def __gt__(self, y): # real signature unknown; restored from __doc__ """ x.__gt__(y) <==> x>y """ pass def __iadd__(self, y): # real signature unknown; restored from __doc__ """ x.__iadd__(y) <==> x+=y """ pass def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__ """ deque([iterable[, maxlen]]) --> deque object Build an ordered collection with optimized access from its endpoints. # (copied from class doc) """ pass def __iter__(self): # real signature unknown; restored from __doc__ """ x.__iter__() <==> iter(x) """ pass def __len__(self): # real signature unknown; restored from __doc__ """ x.__len__() <==> len(x) """ pass def __le__(self, y): # real signature unknown; restored from __doc__ """ x.__le__(y) <==> x<=y """ pass def __lt__(self, y): # real signature unknown; restored from __doc__ """ x.__lt__(y) <==> x<y """ pass @staticmethod # known case of __new__ def __new__(S, *more): # real signature unknown; restored from __doc__ """ T.__new__(S, ...) -> a new object with type S, a subtype of T """ pass def __ne__(self, y): # real signature unknown; restored from __doc__ """ x.__ne__(y) <==> x!=y """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling. """ pass def __repr__(self): # real signature unknown; restored from __doc__ """ x.__repr__() <==> repr(x) """ pass def __reversed__(self): # real signature unknown; restored from __doc__ """ D.__reversed__() -- return a reverse iterator over the deque """ pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__ """ x.__setitem__(i, y) <==> x[i]=y """ pass def __sizeof__(self): # real signature unknown; restored from __doc__ """ D.__sizeof__() -- size of D in memory, in bytes """ pass maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """maximum size of a deque or None if unbounded""" __hash__ = None deque deque
单项队列(先进先出 FIFO )
class Queue: """Create a queue object with a given maximum size. If maxsize is <= 0, the queue size is infinite. """ def __init__(self, maxsize=0): self.maxsize = maxsize self._init(maxsize) # mutex must be held whenever the queue is mutating. All methods # that acquire mutex must release it before returning. mutex # is shared between the three conditions, so acquiring and # releasing the conditions also acquires and releases mutex. self.mutex = _threading.Lock() # Notify not_empty whenever an item is added to the queue; a # thread waiting to get is notified then. self.not_empty = _threading.Condition(self.mutex) # Notify not_full whenever an item is removed from the queue; # a thread waiting to put is notified then. self.not_full = _threading.Condition(self.mutex) # Notify all_tasks_done whenever the number of unfinished tasks # drops to zero; thread waiting to join() is notified to resume self.all_tasks_done = _threading.Condition(self.mutex) self.unfinished_tasks = 0 def task_done(self): """Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete. If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue). Raises a ValueError if called more times than there were items placed in the queue. """ self.all_tasks_done.acquire() try: unfinished = self.unfinished_tasks - 1 if unfinished <= 0: if unfinished < 0: raise ValueError('task_done() called too many times') self.all_tasks_done.notify_all() self.unfinished_tasks = unfinished finally: self.all_tasks_done.release() def join(self): """Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls task_done() to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks. """ self.all_tasks_done.acquire() try: while self.unfinished_tasks: self.all_tasks_done.wait() finally: self.all_tasks_done.release() def qsize(self): """Return the approximate size of the queue (not reliable!).""" self.mutex.acquire() n = self._qsize() self.mutex.release() return n def empty(self): """Return True if the queue is empty, False otherwise (not reliable!).""" self.mutex.acquire() n = not self._qsize() self.mutex.release() return n def full(self): """Return True if the queue is full, False otherwise (not reliable!).""" self.mutex.acquire() n = 0 < self.maxsize == self._qsize() self.mutex.release() return n def put(self, item, block=True, timeout=None): """Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default), block if necessary until a free slot is available. If 'timeout' is a non-negative number, it blocks at most 'timeout' seconds and raises the Full exception if no free slot was available within that time. Otherwise ('block' is false), put an item on the queue if a free slot is immediately available, else raise the Full exception ('timeout' is ignored in that case). """ self.not_full.acquire() try: if self.maxsize > 0: if not block: if self._qsize() == self.maxsize: raise Full elif timeout is None: while self._qsize() == self.maxsize: self.not_full.wait() elif timeout < 0: raise ValueError("'timeout' must be a non-negative number") else: endtime = _time() + timeout while self._qsize() == self.maxsize: remaining = endtime - _time() if remaining <= 0.0: raise Full self.not_full.wait(remaining) self._put(item) self.unfinished_tasks += 1 self.not_empty.notify() finally: self.not_full.release() def put_nowait(self, item): """Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available. Otherwise raise the Full exception. """ return self.put(item, False) def get(self, block=True, timeout=None): """Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default), block if necessary until an item is available. If 'timeout' is a non-negative number, it blocks at most 'timeout' seconds and raises the Empty exception if no item was available within that time. Otherwise ('block' is false), return an item if one is immediately available, else raise the Empty exception ('timeout' is ignored in that case). """ self.not_empty.acquire() try: if not block: if not self._qsize(): raise Empty elif timeout is None: while not self._qsize(): self.not_empty.wait() elif timeout < 0: raise ValueError("'timeout' must be a non-negative number") else: endtime = _time() + timeout while not self._qsize(): remaining = endtime - _time() if remaining <= 0.0: raise Empty self.not_empty.wait(remaining) item = self._get() self.not_full.notify() return item finally: self.not_empty.release() def get_nowait(self): """Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise raise the Empty exception. """ return self.get(False) # Override these methods to implement other queue organizations # (e.g. stack or priority queue). # These will only be called with appropriate locks held # Initialize the queue representation def _init(self, maxsize): self.queue = deque() def _qsize(self, len=len): return len(self.queue) # Put a new item in the queue def _put(self, item): self.queue.append(item) # Get an item from the queue def _get(self): return self.queue.popleft() Queue.Queue
(1) append():添加元素
1 d=collections.deque() 2 d.append('1') 3 d.appendleft('10') 4 d.appendleft('l') 5 print(d) 6 r=d.count('l') 7 print(r) 8 9 10 deque(['l','10','l']) 11 2
(2)size(),get()
1 import queue 2 q=queue.Queue() 3 q.put('123') 4 q.put('789') 5 print(q.qsize()) 6 print(q.get()) 7 8 2 9 123
六、深浅拷贝
import copy
copy.copy()#浅拷贝
copy.deepcopy()#深拷贝
对于数字和字符串来说无论是通过赋值还是通过深浅拷贝,使用的内存地址都是一样的。
(1)数字和字符串的赋值、浅拷贝、深拷贝后的地址是一样的:
1 import copy 2 n1=123 3 print(id(n1)) 4 n2=n1 5 print(id(n2)) 6 n2=copy.copy(n1) 7 print(id(n2)) 8 n3=copy.deepcopy(n1) 9 print(id(n3)) 10 #地址是一样的: 11 492584624 12 492584624 13 492584624 14 492584624
(2)对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。
赋值,只是创建一个变量,该变量指向原来内存地址,如:
1 n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]} 2 n2 = n1
浅拷贝,在内存中只额外创建第一层数据
1 import copy 2 n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]} 4 n3 = copy.copy(n1)
深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)
1 import copy 2 dic={ 3 'cpu':[80,], 4 'mem':[80,], 5 'disk':[80,] 6 } 7 print('before',dic) 8 new_dic=copy.deepcopy(dic) 9 new_dic['cpu'][0]=50 10 print(dic) 11 print(new_dic) 12 13 before {'disk': [80], 'cpu': [80], 'mem': [80]} 14 {'disk': [80], 'cpu': [80], 'mem': [80]} 15 {'mem': [80], 'cpu': [50], 'disk': [80]}
函数:
定义和使用:
1 def 函数名(参数): 2 3 ... 4 函数体 5 ...
1 def mail(): 2 n=123 3 n+=1 4 print(n) 5 mail() 6 f=mail 7 f() 8 124 9 124
函数的定义主要有如下要点:
- def:表示函数的关键字
- 函数名:函数的名称,日后根据函数名调用函数
- 函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
- 参数:为函数体提供数据
- 返回值:当函数执行完毕后,可以给调用者返回数据。
以上要点中,比较重要有参数和返回值:
1、返回值
函数是一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。
1 import smtplib 2 from email.mime.text import MIMEText 3 from email.utils import formataddr 4 def mail(): 5 ret=123 6 try: 7 msg=MIMEText('邮件内容','plain','utf-8') 8 msg['from']=formataddr(['郭晶晶','guojingjing8@163.com']) 9 msg['to']=formataddr({'郭美奂','240430854@qq.com'}) 10 msg['subject']="主题" 11 server=smtplib.smtp("smtp.126.com",25) 12 server.login("guojingjing881007@163.com","zhang911007") 13 server.sendmail('guojingjing8@163.com',['240430854@qq.com',],msg.as_string()) 14 server.quit() 15 except Exception: 16 ret=456 17 return ret 18 ret=mail() 19 print(ret)
函数的普通参数:
形式参数和实际参数:(还是以发送邮件为例,这里user是形式参数,具体的邮箱账号是实际参数)
1 import smtplib 2 from email.mime.text import MIMEText 3 from email.utils import formataddr 4 def mail(user): 5 ret=True 6 try: 7 msg=MIMEText('邮件内容','plain','utf-8') 8 msg['from']=formataddr(['郭晶晶','guojingjing881007@163.com']) 9 msg['to']=formataddr({'郭美奂','1353971628@qq.com'}) 10 msg['subject']="主题" 11 server=smtplib.smtp("smtp.126.com",25) 12 server.login("guojingjing881007@163.com","zhang881007") 13 server.sendmail('guojingjing881007@163.com',[user,],msg.as_string()) 14 server.quit() 15 except Exception: 16 ret=False 17 return ret 18 ret=mail('240420840@qq.com') 19 if ret: 20 print('发送成功') 21 else: 22 print('发送失败')
函数的默认参数:
1 def func(name, age = 18): 2 3 print "%s:%s" %(name,age) 4 5 # 指定参数 6 func('guojingjing', 26) 7 # 使用默认参数 8 func('yoyo') 9 10 注:默认参数需要放在参数列表最后 11 12 默认参数
函数的动态参数:
1 def func(*args): 2 3 print args 4 5 6 # 执行方式一 7 func(11,33,4,4454,5) 8 9 # 执行方式二 10 li = [11,2,2,3,3,4,54] 11 func(*li) 12 13 动态参数-序列
1 def show(*arg,**kwargs): 2 print(arg,type(arg))#将传入的参数转换成元组 3 print(kwargs,type(kwargs))#将传入的参数转换成字典 4 show(11,22,33,44,n1=88,alex=’yunwei’)
1 def func(**kwargs): 2 3 print args 4 5 6 # 执行方式一 7 func(name='yangyun',age=18) 8 9 # 执行方式二 10 li = {'name':'yangyun', age:18, 'gender':'male'} 11 func(**li) 12 13 动态参数-字典
def show(*arg,**kwargs): print(arg,type(arg))#将传入的参数转换成元组 print(kwargs,type(kwargs))#将传入的参数转换成字典 l=[11,22,33,44] d={‘n1’:88,’alex’:’yunwei’} show(*l,**d)#注意这里的星号
使用动态参数实现字符串格式化:
1 s1='{0}is{1}' 2 l=['alex','teacher'] 3 result=s1.format(*l) 4 print(result) 5 6 s1="{name} is {acter}" 7 result=s1.format(name='alex',acter='teacher') 8 print(result) 9 10 s1="{name} is {acter}" 11 d={'name':'alex','acter':'teacher'} 12 result=s1.format(**d) 13 print(result) 14 15 alexisteacher 16 alex is teacher 17 alex is teacher
Python lambda表达式:
学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:
1 # 普通条件语句 2 if 1 == 1: 3 name = 'teacher' 4 else: 5 name = 'actor' 6 7 # 三元运算 8 name = 'teacher' if 1 == 1 else 'actor'
对于简单的函数,也存在一种简便的表示方式,即:lambda表达式
func=lambda a:a+1#创建形式参数,函数内容为a+1,并把结果返回 ret=func(99) print(ret)
内置函数:
(1)ord()和chr()
ord(‘a’)#将字符翻译成数字 97 chr()#将数字翻译成字符
(2)Random.randint(1,99)#随机生成1到99的数值
(3)enumerate()
1 li=['alex','eric','marry'] 2 for i,item in enumerate(li,1): 3 print(i,item) 4 1 alex 5 2 eric 6 3 marry
(4)eval(“6*8”)#直接输出乘积
(5)map
遍历序列,对序列中每个元素进行操作,最终获取新的序列
(6)filter
对于序列中的元素进行筛选,最终获取符合条件的序列
1 li = [11, 22, 33] 2 3 new_list = filter(lambda arg: arg > 22, li) 4 5 #filter第一个参数为空,将获取原来序列
(7)global()#当前可用的所有的变量 hash()#用来做字典的时候的Key hex()#将数字转 成16进制 max()#最大 min()#最小值 oct()#8进制 open()#打开文件 用的 pow()#幂 round(8.9)#四舍五入 range()#
1 i=range(0,10) 2 3 for k in i:print(k)#循环拿到0到9的值
文件操作:
操作文件时,一般需要经历如下步骤:
- 打开文件
- 操作文件
一、打开文件
文件句柄 = file('文件路径', '模式')
注:python中打开文件有两种方式,即:open(...) 和 file(...) ,本质上前者在内部会调用后者来进行文件操作,推荐使用 open。
打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作。
打开文件的模式有:
- r,只读模式(默认)。
- w,只写模式。【不可读;不存在则创建;存在则删除内容;】
- a,追加模式。【可读; 不存在则创建;存在则只追加内容;】
"+" 表示可以同时读写某个文件
- r+,可读写文件。【可读;可写;可追加】
- w+,写读
- a+,同a
"U"表示在读取时,可以将 \r \n \r\n自动转换成 \n (与 r 或 r+ 模式同使用)
- rU
- r+U
"b"表示处理二进制文件(如:FTP发送上传ISO镜像文件,linux可忽略,windows处理二进制文件时需标注)
- rb
- wb
- ab
二、文件操作
class file(object): def close(self): # real signature unknown; restored from __doc__ 关闭文件 """ close() -> None or (perhaps) an integer. Close the file. Sets data attribute .closed to True. A closed file cannot be used for further I/O operations. close() may be called more than once without error. Some kinds of file objects (for example, opened by popen()) may return an exit status upon closing. """ def fileno(self): # real signature unknown; restored from __doc__ 文件描述符 """ fileno() -> integer "file descriptor". This is needed for lower-level file interfaces, such os.read(). """ return 0 def flush(self): # real signature unknown; restored from __doc__ 刷新文件内部缓冲区 """ flush() -> None. Flush the internal I/O buffer. """ pass def isatty(self): # real signature unknown; restored from __doc__ 判断文件是否是同意tty设备 """ isatty() -> true or false. True if the file is connected to a tty device. """ return False def next(self): # real signature unknown; restored from __doc__ 获取下一行数据,不存在,则报错 """ x.next() -> the next value, or raise StopIteration """ pass def read(self, size=None): # real signature unknown; restored from __doc__ 读取指定字节数据 """ read([size]) -> read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached. Notice that when in non-blocking mode, less data than what was requested may be returned, even if no size parameter was given. """ pass def readinto(self): # real signature unknown; restored from __doc__ 读取到缓冲区,不要用,将被遗弃 """ readinto() -> Undocumented. Don't use this; it may go away. """ pass def readline(self, size=None): # real signature unknown; restored from __doc__ 仅读取一行数据 """ readline([size]) -> next line from the file, as a string. Retain newline. A non-negative size argument limits the maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at EOF. """ pass def readlines(self, size=None): # real signature unknown; restored from __doc__ 读取所有数据,并根据换行保存值列表 """ readlines([size]) -> list of strings, each a line from the file. Call readline() repeatedly and return a list of the lines so read. The optional size argument, if given, is an approximate bound on the total number of bytes in the lines returned. """ return [] def seek(self, offset, whence=None): # real signature unknown; restored from __doc__ 指定文件中指针位置 """ seek(offset[, whence]) -> None. Move to new file position. Argument offset is a byte count. Optional argument whence defaults to 0 (offset from start of file, offset should be >= 0); other values are 1 (move relative to current position, positive or negative), and 2 (move relative to end of file, usually negative, although many platforms allow seeking beyond the end of a file). If the file is opened in text mode, only offsets returned by tell() are legal. Use of other offsets causes undefined behavior. Note that not all file objects are seekable. """ pass def tell(self): # real signature unknown; restored from __doc__ 获取当前指针位置 """ tell() -> current file position, an integer (may be a long integer). """ pass def truncate(self, size=None): # real signature unknown; restored from __doc__ 截断数据,仅保留指定之前数据 """ truncate([size]) -> None. Truncate the file to at most size bytes. Size defaults to the current file position, as returned by tell(). """ pass def write(self, p_str): # real signature unknown; restored from __doc__ 写内容 """ write(str) -> None. Write string str to file. Note that due to buffering, flush() or close() may be needed before the file on disk reflects the data written. """ pass def writelines(self, sequence_of_strings): # real signature unknown; restored from __doc__ 将一个字符串列表写入文件 """ writelines(sequence_of_strings) -> None. Write the strings to the file. Note that newlines are not added. The sequence can be any iterable object producing strings. This is equivalent to calling write() for each string. """ pass def xreadlines(self): # real signature unknown; restored from __doc__ 可用于逐行读取文件,非全部 """ xreadlines() -> returns self. For backward compatibility. File objects now include the performance optimizations previously implemented in the xreadlines module. """ pass
三、with
为了避免打开文件后忘记关闭,可以通过管理上下文,即:
with open('log','r') as f: ...
如此方式,当with代码块执行完毕时,内部会自动关闭并释放文件资源。
在Python 2.7 后,with又支持同时对多个文件的上下文进行管理,即:
with open('log1') as obj1, open('log2') as obj2: pass