【线性结构】一元多项式的乘法与加法运算
设计函数分别求两个一元多项式的乘积与和。
输入格式:
输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
输出格式:
输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0
。
输入样例:
4 3 4 -5 2 6 1 -2 0
3 5 20 -7 4 3 1
输出样例:
15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 1 5 20 -4 4 -5 2 9 1 -2 0
// test3.6.cpp : 一元多项式的乘法与加法运算 #include <stdio.h> const int MAX = 1005; const int MULMAX = 2005; int a[MAX], b[MAX], c[MAX] = { 0 }, d[MULMAX] = {0}; //函数声明 int *Add(int a[],int b[]); int *Mul(int a[],int b[]); int main() { int lena, lenb; int idx, coe;//分别表示指数和系数 scanf("%d", &lena); for (int i = 0; i < lena; i++) { scanf("%d%d", &coe, &idx); a[idx] = coe; } scanf("%d", &lenb); for (int i = 0; i < lenb; i++) { scanf("%d%d", &coe, &idx); b[idx] = coe; } //执行函数 Add(a, b); Mul(a, b); int f1 = 0, f2 = 0; for (int i = 0; i < MAX; i++) { if (c[i]) { f1 = 1; break; } } for (int i = 0; i < MULMAX; i++) { if (d[i]) { f2 = 1; break; } } int tag1 = 0, tag2 = 0; if (f2) { for (int i = MULMAX-1; i >= 0; i--) { if (d[i]) { if (tag2 == 1)printf(" "); printf("%d %d", d[i],i); tag2 = 1; } } } else { printf("0 0"); } printf("\n"); if (f1) { for (int i = MAX - 1; i >= 0; i--) { if (c[i]) { if (tag1 == 1)printf(" "); printf("%d %d", c[i], i); tag1 = 1; } } } else { printf("0 0"); } printf("\n"); return 0; } //加法 int *Add(int a[],int b[]) { //int index = 0; for (int i = 0; i < MAX; i++) { c[i]+=a[i]; } for (int i = 0; i < MAX; i++) { c[i] += b[i]; } return c; } //乘法 int *Mul(int a[], int b[]) { for (int i = 0; i < MAX; i++) { for (int j = 0; j < MAX; j++) { d[i + j] += a[i] * b[j]; } } return d; }
作者:PennyXia
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。