Fellow me on GitHub

2017 ACM-ICPC西安网赛B-Coin

B-Coin

Bob has a not even coin, every time he tosses the coin, the probability that the coin's front face up is \frac{q}{p}(\frac{q}{p} \le \frac{1}{2})pq​​(pq​​21​​).

The question is, when Bob tosses the coin kktimes, what's the probability that the frequency of the coin facing up is even number.

If the answer is \frac{X}{Y}YX​​, because the answer could be extremely large, you only need to print (X * Y^{-1}) \mod (10^9+7)(XY1​​)mod(109​​+7).

Input Format

First line an integer TT, indicates the number of test cases (T \le 100T100).

Then Each line has 33 integer p,q,k(1\le p,q,k \le 10^7)p,q,k(1p,q,k107​​) indicates the i-th test case.

Output Format

For each test case, print an integer in a single line indicates the answer.

样例输入

2
2 1 1
3 1 2

样例输出

500000004
555555560

题目来源

2017 ACM-ICPC 亚洲区(西安赛区)网络赛

 1 //2017-10-24
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <iostream>
 5 #include <algorithm>
 6 #define ll long long
 7 
 8 using namespace std;
 9 
10 const int MOD = 1000000007;
11 
12 ll quickPow(ll a, ll n){
13     ll ans = 1;
14     while(n){
15         if(n&1)
16             ans = (a*ans)%MOD;
17         a = (a*a)%MOD;
18         n >>= 1;
19     }
20     return ans;
21 }
22 
23 int main()
24 {
25     ll p, q, k, T;
26     cin>>T;
27     while(T--){
28         cin>>p>>q>>k;
29         ll X = quickPow(p-2*q, k);
30         ll Y = quickPow(p, k);
31         cout<<(((1+X*quickPow(Y, MOD-2))%MOD) * quickPow(2, MOD-2))%MOD<<endl;
32     }
33 
34     return 0;
35 }

 

posted @ 2017-10-24 14:43  Penn000  阅读(231)  评论(0编辑  收藏  举报