POJ3693(SummerTrainingDay10-J 后缀数组)
Maximum repetition substring
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10241 | Accepted: 3157 |
Description
The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.
Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.
Input
The input consists of multiple test cases. Each test case contains exactly one line, which
gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.
The last test case is followed by a line containing a '#'.
Output
For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.
Sample Input
ccabababc daabbccaa #
Sample Output
Case 1: ababab Case 2: aa
Source
1 //2017-08-10 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 #include <algorithm> 6 7 using namespace std; 8 9 const int N = 1000010; 10 const int inf = 0x3f3f3f3f; 11 char str[N]; 12 int n, r[N]; 13 int wa[N], wb[N], wv[N], wss[N]; 14 int Suffix[N];//Str下标为i ~ Len的连续子串(即后缀) 15 int SA[N];//满足Suffix[SA[1]] < Suffix[SA[2]] …… < Suffix[SA[Len]],即排名为i的后缀为Suffix[SA[i]](与Rank是互逆运算) 16 int Rank[N];//Suffix[i]在所有后缀中的排名 17 int Height[N];//height[i]表示Suffix[SA[i]]和Suffix[SA[i-1]]的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 18 int H[N];//等于Height[Rank[i]],也就是后缀Suffix[i]和它前一名的后缀的最长公共前缀 19 20 //比较母串r中起始位置为a和b,长度都为len的子串是否相等 21 int cmp(int *r, int a, int b, int len) 22 { 23 return r[a]==r[b] && r[a+len]==r[b+len]; 24 } 25 26 //倍增算法求SA数组。 27 void da(int *r, int *SA, int n, int m) 28 { 29 int i, j, p, *x = wa, *y = wb, *t; 30 for(i = 0; i < m; i++)wss[i] = 0; 31 for(i = 0; i < n; i++)wss[x[i]=r[i]]++; 32 for(i = 0; i < m; i++)wss[i]+=wss[i-1]; 33 for(i = n-1; i >= 0; i--)SA[--wss[x[i]]]=i; 34 for(j = 1, p = 1; p < n; j *= 2, m = p){ 35 for(p = 0, i = n-j; i < n; i++) 36 y[p++] = i; 37 for(i = 0; i < n; i++) 38 if(SA[i] >= j) 39 y[p++] = SA[i]-j; 40 for(i = 0; i < n; i++) 41 wv[i] = x[y[i]]; 42 for(i = 0; i < m; i++) 43 wss[i] = 0; 44 for(i = 0; i < n; i++) 45 wss[wv[i]]++; 46 for(i = 1; i < m; i++) 47 wss[i] += wss[i-1]; 48 for(i = n-1; i >= 0; i--) 49 SA[--wss[wv[i]]] = y[i]; 50 for(t = x, x = y, y = t, p = 1, x[SA[0]]=0, i = 1; i < n; i++) 51 x[SA[i]] = cmp(y, SA[i-1], SA[i], j)?p-1:p++; 52 } 53 } 54 55 //计算height数组 56 void cal_Height(int *r, int *SA, int n) 57 { 58 int i, j, k = 0; 59 for(i = 1; i <= n; i++)Rank[SA[i]] = i; 60 for(i = 0; i < n; Height[Rank[i++]] = k) 61 for(k?k--:0, j=SA[Rank[i]-1]; r[i+k]==r[j+k]; k++) 62 ; 63 } 64 65 int st[N][30]; 66 67 void init_rmq(int n) 68 { 69 for(int i=1;i<=n;i++) st[i][0]=Height[i]; 70 for(int j=1;(1<<j)<=n;j++) 71 for(int i=1;i+(1<<j)-1<=n;i++) 72 { 73 st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]); 74 } 75 } 76 77 //询问后缀i和后缀j的最长公共前缀 78 int lcp(int i,int j) 79 { 80 i = Rank[i]; 81 j = Rank[j]; 82 if(i>j) swap(i,j); 83 i++; 84 int k=0; 85 while(i+(1<<(k+1)) <= j) k++; 86 return min(st[i][k],st[j-(1<<k)+1][k]); 87 } 88 89 int main() 90 { 91 int kase = 0; 92 while(scanf("%s", str)!=EOF) 93 { 94 if(str[0] == '#')break; 95 n = strlen(str); 96 for(int i = 0; i < n; i++) 97 r[i] = str[i]-'a'+1; 98 da(r, SA, n+1, 200); 99 cal_Height(r, SA, n); 100 init_rmq(n); 101 int ans = 0, bg = 0, ed = 0, a, b, c; 102 for(int L = 1; 2*L <= n; L++) 103 { 104 for(int i = 0; (i+1)*L+1 < n; i++) 105 { 106 a = i*L; 107 b = (i+1)*L; 108 if(str[a] != str[b])continue; 109 c = lcp(a, b); 110 int ll = 0; 111 int rr = b+c-1; 112 for(int j = 0; j < L; j++) 113 { 114 if(a - j < 0 || str[a-j] != str[b-j])break; 115 ll = a - j; 116 int cnt = (rr-ll+1)/L; 117 if(cnt > ans || (cnt == ans && Rank[ll] < Rank[bg])) 118 { 119 ans = cnt; 120 bg = ll; 121 ed = ll+cnt*L-1; 122 } 123 } 124 } 125 } 126 printf("Case %d: ", ++kase); 127 if(ans == 0)printf("%c\n", str[SA[1]]); 128 else{ 129 for(int i = bg; i <= ed; i++) 130 printf("%c", str[i]); 131 printf("\n"); 132 } 133 } 134 135 return 0; 136 }