Loading

HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)

题意

\(n\) 局石头剪刀布,设每局的贡献为赢的次数与输的次数之 \(\gcd\) ,求期望贡献乘以 \(3^{2n}\) ,定义若 \(xy=0\) 则,\(\gcd(x,y)=x+y\)

思路

不难得出

\[ans=3^n\sum_{i=0}^n\sum_{j=0}^{n-i}{n\choose i}{n-i\choose j}\gcd(i,j) \]

对于正整数 \(n\) ,有如下表达式

\[n=\sum_{d|n}\varphi(d) \]

那么

\[ans=3^n\sum_{i=1}^n\sum_{j=1}^{n-i}{n\choose i}{n-i\choose j}\sum_{d|\gcd(i,j)}\varphi(d)+3^n\cdot2\sum_{i=1}^n{n\choose i}i \]

注意欧拉函数是不取到零的,若要严谨的写,零应该特判。

在外层枚举 \(d\) ,并只枚举为 \(d\) 倍数的 \(i,j\)

\[ans=3^n\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor{n\over d}\rfloor}\sum_{j=1}^{\lfloor{n\over d}\rfloor-i}{n\choose id}{n-id\choose jd}+3^n\cdot2\sum_{i=1}^n{n\choose i}i \]

另外,利用表达式

\[{n\choose m}={n\over m}{n-1\choose m-1} \]

还可以化简后式(虽然对复杂度没有影响。。)

\[ans=3^nn!\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor{n\over d}\rfloor}\sum_{j=1}^{{\lfloor{n\over d}\rfloor}-i}{1\over (id)!}{1\over (jd)!}\cdot{1\over(n-id-jd)!}+6^nn \]

变成了卷积的形式,后面于 \(i+j\) 有关的项就当作最后乘出多项式的常数。

复杂度的证明如下

\[\begin{array}{} T(n)&=\displaystyle\sum_{i=1}^n {n\over i}\log{n\over i}\\ &\geq \displaystyle\sum_{i=1}^n {n\over i}\log{n}\\ &= \log n\displaystyle\sum_{i=1}^n {n\over i}\\ &\geq n\log n\ln n \end{array} \]

那么此题可解。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
using namespace std;
template<typename T,typename _T>inline bool chk_min(T &x,const _T y){return y<x?x=y,1:0;}
template<typename T,typename _T>inline bool chk_max(T &x,const _T y){return x<y?x=y,1:0;}
typedef long long ll;
const double PI=acos(-1.0);
const int N=1<<17|5;
namespace _Maths
{
	ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
	void exgcd(ll a,ll b,ll &x,ll &y)
	{
		if(!b){x=1,y=0;return;}
		exgcd(b,a%b,y,x),y-=a/b*x;
	}
	ll Pow(ll a,ll p,ll P)
	{
		ll res=1;
		for(;p>0;p>>=1,(a*=a)%=P)if(p&1)(res*=a)%=P;
		return res;
	}
	ll inv(ll a,ll P){ll x,y;exgcd(a,P,x,y);return (x%P+P)%P;}
};
using namespace _Maths;
int P;
struct Complex
{
	double x,y;
	Complex operator +(const Complex &_)const{return (Complex){x+_.x,y+_.y};}
	Complex operator -(const Complex &_)const{return (Complex){x-_.x,y-_.y};}
	Complex operator *(const Complex &_)const{return (Complex){x*_.x-y*_.y,x*_.y+y*_.x};}
	Complex operator /(const int &_)const{return (Complex){x/_,y/_};}
};
namespace _Polynomial
{
	const int K=(1<<15)-1,L=15;
	Complex A[N<<1],B[N<<1],C[N<<1],D[N<<1];
	Complex w[N<<1];int r[N<<1];
	void DFT(Complex *a,int op,int n)
	{
		FOR(i,0,n-1)if(i<r[i])swap(a[i],a[r[i]]);
		for(int i=2;i<=n;i<<=1)
			for(int j=0;j<n;j+=i)
				for(int k=0;k<i/2;k++)
				{
					Complex u=a[j+k],t=w[op==1?n/i*k:(n-n/i*k)&(n-1)]*a[j+k+i/2];	
					a[j+k]=u+t,a[j+k+i/2]=u-t;
				}
		if(op==-1)FOR(i,0,n-1)a[i]=a[i]/n;
	}
	void multiply(const int *a,const int *b,int *c,int n1,int n2)
	{
		int n=1;
		while(n<n1+n2-1)n<<=1;
		FOR(i,0,n1-1)A[i]=(Complex){a[i]&K,a[i]>>L};
		FOR(i,0,n2-1)B[i]=(Complex){b[i]&K,b[i]>>L};
		FOR(i,n1,n-1)A[i]=(Complex){0,0};
		FOR(i,n2,n-1)B[i]=(Complex){0,0};
		FOR(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
		FOR(i,0,n-1)w[i]=(Complex){cos(2*PI*i/n),sin(2*PI*i/n)};
		DFT(A,1,n),DFT(B,1,n);
		FOR(i,0,n-1)
		{
			int j=(n-i)&(n-1);
			C[i]=(Complex){0.5*(A[i].x+A[j].x),0.5*(A[i].y-A[j].y)}*B[i];
			D[i]=(Complex){0.5*(A[i].y+A[j].y),0.5*(A[j].x-A[i].x)}*B[i];
		}
		DFT(C,-1,n),DFT(D,-1,n);
		FOR(i,0,n1+n2-2)
		{
			ll s=C[i].x+0.5,t=C[i].y+0.5,u=D[i].x+0.5,v=D[i].y+0.5;
			c[i]=(s+((t+u)%P<<L)%P+(v%P<<L<<L)%P)%P;
		}
	}
};
int A[N],B[N],C[N<<1];
int phi[N],fac[N],ifac[N];
int n;

void init()
{
	fac[0]=fac[1]=1;FOR(i,2,n)fac[i]=(ll)fac[i-1]*i%P;
	ifac[0]=ifac[1]=1;FOR(i,2,n)ifac[i]=(ll)(P-P/i)*ifac[P%i]%P;
	FOR(i,2,n)ifac[i]=(ll)ifac[i-1]*ifac[i]%P;
	FOR(i,1,n)phi[i]=i;
	FOR(i,2,n)if(phi[i]==i)
		for(int j=i;j<=n;j+=i)
			phi[j]=phi[j]/i*(i-1);
}

int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&P);
		init();
	   	ll ans=0;
	   	FOR(d,1,n)
	   	{
			ll sum=0;
	   		FOR(i,1,n/d)A[(i)-1]=ifac[i*d];
	   		FOR(i,1,n/d)B[(i)-1]=ifac[i*d];
	   		_Polynomial::multiply(A,B,C,n/d,n/d);
	   		FOR(i,1,n/d)(sum+=(ll)C[(i)-2]*ifac[n-i*d]%P)%=P;
	   		(ans+=sum*phi[d]%P)%=P;
	   	}
	   	ans=(ans*Pow(3,n,P)%P*fac[n]%P+Pow(6,n,P)*n%P)%P;
	   	printf("%lld\n",(ans+P)%P);
	}
	return 0;
}
posted @ 2019-01-15 15:43  Paulliant  阅读(284)  评论(0编辑  收藏  举报