【纪中集训2019.3.12】Z的礼物

题意

已知\(a_{i} = \sum_{j=1}^{i} \{^{i} _{j} \}b_{j}\), 给出\(a_{1} 到 a_{n}\)

\(b_{l} 到 b_{r}\)\(1e9+7\)的意义下取模的值;

\(1 \le l \le r \le n \le 10^5\)

\(r-l \le 100\)

\(0 \le a_{i} \lt 10^9 + 7\)

题解

  • Part1

  • 斯特林反演(https://www.cnblogs.com/hchhch233/p/10016543.html):

    • \(f(n) = \sum_{i=1}^{n} \{^n_i\} g(n) \Longleftrightarrow g(n) = \sum_{i=1}^{n} (-1)^{n-i} [^n_i]f(i)\)
  • 由于\(r-l\)比较小,可以直接暴力求,只需要快速求出\([^n_1] - [^n_n]\)

  • \([_m^n] = [x^m] x^{\overline n}\) , 其中\(x^{\overline n} = \Pi_{i=1}^n(x+i-1)\)

  • Part 2

  • 直接做是\(n log ^2n\)的,假设在计算\(F_n(x) = x^{\overline n}\)时已经计算了\(F_\frac{n}{2}(x)\),记\(m = \frac{n}{2} , F_{m} = \sum_{i=0}^{m}a_{i} x^{i}\)

  • 只需要计算\(F'_{m} (x) = F_{m}(x+m)\)\(F_{m}\)相乘;

  • \[F'_m(x) = \sum_{i=0}^{m} a_{i} (x+m)^i \\ = \sum_{i=0}^{m} a _{i}\sum_{j=0}^{i}(^i_j)x^j m^{i-j} \\ = \sum_{i=0}^{m} \sum_{j=0}^{i} a_{i} \frac{i!}{j!(i-j)!}x^{j}m^{i-j} \\ = \sum_{i=0}^{m} \frac{x^i}{i!} \sum_{j=0}^{m-i} a_{i+j}(i+j)! \ \frac{m^{j}}{j!} \]

  • 记$A(x)=\sum_{i=0}^{m} a_{i} i! x^{i}, B(x) = \sum_{i=0}{m}\frac{m{i}}{i!} x^{m-i} $

  • 相乘之后取第\(m+i\)项可以算后面的东西

  • Part 3

  • 可是不是\(ntt\)模数,直接取模会爆\(long \ long\)需要用到拆系数\(ntt\);

  • \(A(x)*B(x)\)分解成\((k * A1(x) + A2(x)) * (k * B1(x) + B2(x)) , k 一般取\sqrt{n} (2^{15} ) 左右\)

  • 暴力是7次\(fft\),可以优化到需要4次\(fft\)

  • 两次\(fft\)合并成一次的做法,需要计算\(dft(A(x))和dft(B(x))\)

  • 记: $$\begin{align} P(x) = A(x) + iB(x)\ Q(x) = A(x) -iB(x) \end{align}$$

  • 考虑直接做\(P\)\(P’\),考虑\(Q \ dft\)之后的结果\(Q'\)

    \[\begin{align} Q'[k] &= A(w_{n}^{k}) - iB(w_{n}^{k}) \\ &= \sum_{j=0}^{n-1} (a_{j}-ib_{j})w^{jk}_{n} \\ &= \sum_{j=0}^{n-1}(a_{j}-ib_{j})(cos(\frac{2\pi jk}{n} ) + isin(\frac{2\pi jk}{n}) ) \\ &= \sum_{j=0}^{n-1}(a_{j}cos(\frac{2\pi jk}{n}) + b_{j}sin(\frac{2\pi jk}{n}))- i(b_{j}cos(\frac{2\pi jk}{n}) - a_{j}sin(\frac{2\pi jk}{n})) \\ &= conj \sum_{j=0}^{n-1} (a_{j}cos(\frac{-2\pi jk}{n}) - b_{j}sin(\frac{-2\pi jk}{n} ) ) +i( b_{j}cos(\frac{-2\pi jk}{n}) + a_{j}sin(\frac{-2\pi jk}{n})) \\ &= conj \sum_{j=0}^{n-1} (a_{j}+ib_{j})(cos(\frac{-2\pi jk}{n})+isin(\frac{-2\pi jk}{n})) \\ &= conj \ \sum_{j=0}^{n-1} (a_{j}+ib_{j})w^{-jk}_{n} \\ &= conj \ P'[n-k] \end{align} \]

  • 所以由\(P'\)直接得到\(Q'\):

  • 即:$$ \begin{align} A'(x) = \frac{P'(x) + Q'(x)}{2} \ B'(x) = \frac{P'(x) - Q'(x)}{2i}\end{align} g $$

  • 结果也存在实部和虚部里直接\(idft\)回去就好了;

  • 注意精度;

    #include<bits/stdc++.h>
    #define ld long double
    #define ll long long 
    using namespace std;
    const int N=400010,mod=1e9+7;
    const ld pi=acos(-1);
    int n,l,r,rev[N],fac[N],inv[N],p[N],a[N],b[N];
    char gc(){
    	static char*p1,*p2,s[1000000];
    	if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
    	return(p1==p2)?EOF:*p1++;
    }
    int rd(){
    	int x=0;char c=gc();
    	while(c<'0'||c>'9')c=gc();
    	while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+c-'0',c=gc();
    	return x;
    }
    int pw(int x,int y){
    	int re=1;
    	while(y){
    		if(y&1)re=(ll)re*x%mod;
    		y>>=1,x=(ll)x*x%mod;
    	}
    	return re;
    }
    struct C{
    	ld x,y;
    	C(ld _x=0,ld _y=0):x(_x),y(_y){};
    	C operator +(const C&A)const{return C(x+A.x,y+A.y);}
    	C operator -(const C&A)const{return C(x-A.x,y-A.y);}
    	C operator *(const C&A)const{return C(x*A.x-y*A.y,x*A.y+y*A.x);}
    	C operator /(const ld&A)const{return C(x/A,y/A);}
    	C operator !()const{return C(x,-y);}
    };
    void fft(C*A,int len,int f){
    	for(int i=0;i<len;++i)if(i<rev[i])swap(A[i],A[rev[i]]);
    	for(int i=1;i<len;i<<=1){
    		C wn=C(cos(pi/i),f*sin(pi/i));
    		for(int j=0;j<len;j+=i<<1){
    			C w=C(1,0);
    			for(int k=0;k<i;++k,w=w*wn){
    				C x=A[j+k],y=w*A[j+k+i];
    				A[j+k]=x+y,A[j+k+i]=x-y;
    			}
    		}
    	}
    	if(!~f){for(int i=0;i<len;++i){A[i]=A[i]/len;}}
    }
    void mul(int*A,int*B,int n){
    	static C t1[N],t2[N],t3[N],t4[N];
    	int L,len;
    	for(L=0,len=1;len<(n+1)<<1;++L,len<<=1);
    	for(int i=0;i<len;++i){rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));}
    	for(int i=0;i<=n;++i)t1[i]=C(A[i]>>15,A[i]&0x7fff),t2[i]=C(B[i]>>15,B[i]&0x7fff);
    	for(int i=n+1;i<len;++i)t1[i]=t2[i]=C(0,0);
    	fft(t1,len,1),fft(t2,len,1);
    	for(int i=0;i<len;++i){
    		C x1=t1[i],y1=!t1[(len-i)&(len-1)];
    		C x2=t2[i],y2=!t2[(len-i)&(len-1)];
    		t3[i]=(x1+y1)*x2*C(0.5,0);
    		t4[i]=(x1-y1)*x2*C(0,-0.5);
    	//	t3[i]=((x1+y1)*(x2+y2)+(x1+y1)*(x2-y2))*C(0.25,0);
    	//	t4[i]=((x1-y1)*(x2+y2)+(x1-y1)*(x2-y2))*C(0,-0.25);
    	}
    	fft(t3,len,-1),fft(t4,len,-1);
    	for(int i=0;i<=n<<1;++i){
    		A[i]=((((ll)(t3[i].x+0.1)%mod)<<30)+(((ll)(t3[i].y+t4[i].x+0.1)%mod)<<15)+(ll)(t4[i].y+0.1))%mod;
    	}
    }
    void solve(int*A,int n){
    	if(n==0){A[0]=1;return;}
    	if(n==1){A[1]=1;return;}
    	if(n&1){
    		solve(A,n-1);
    		for(int i=n;i;--i)A[i]=(A[i-1]+(ll)A[i]*(n-1))%mod;
    		A[0]=0; 
    		return;
    	}
    	static int t1[N],t2[N];
    	int m=n>>1;
    	solve(A,m);
    	for(int i=0;i<=m;++i)t1[i]=(ll)A[i]*fac[i]%mod;
    	for(int i=0,t=1;i<=m;++i,t=(ll)t*m%mod)t2[m-i]=(ll)t*inv[i]%mod;
    	mul(t1,t2,m);
    	for(int i=0;i<=m;++i){t1[i]=(ll)inv[i]*t1[m+i]%mod;}
    	mul(A,t1,m);
    }
    int main(){
    	freopen("gift.in","r",stdin);
    	freopen("gift.out","w",stdout);
    	n=rd();l=rd();r=rd();
    	for(int i=1;i<=n;++i)p[i]=rd();
    	for(int i=fac[0]=inv[0]=1;i<=n;++i){
    		fac[i]=(ll)fac[i-1]*i%mod;
    		inv[i]=pw(fac[i],mod-2);
    	}
    	solve(a,l-1);
    	for(int i=l-1;i<=r;++i){
    		for(int j=1;j<=i;++j){
    			int t=(ll)a[j]*p[j]%mod;
    			if((i-j)&1)b[i]=(b[i]-t+mod)%mod; 
    			else b[i]=(b[i]+t)%mod;
    		}
    		for(int j=i+1;j;--j){a[j]=(a[j-1]+(ll)a[j]*i)%mod;}a[0]=0;
    	//	b[i]=(b[i]-b[i-1]+mod)%mod;
    	}
    	for(int i=l;i<=r;++i)printf("%d ",(b[i]-b[i-1]+mod)%mod);
    	return 0;
    }
    
posted @ 2019-03-12 22:02  大米饼  阅读(327)  评论(0编辑  收藏  举报