Newton 插值法
定义
\(f(x)\) 关于 \(x_0, x_1, \dots, x_k\) 的 \(k\) 阶均差(差商)记做 $ f [x_0, x_1, \dots, x_k] $,均差是递归定义的,有两种等价定义
\begin{align}
f[x] &= f(x)\notag\\
f[x_0,x_1,\dots,x_k] &=\frac{f[x_0, x_1, \dots, x_{k-2}, x_{k-1}] - f[x_1, x_2, \dots, x_{k-1}, x_{k}]}{x_0 - x_k}\label{E:1}\\
&= \frac{ f[x_0, x_1, \dots, x_{k-2}, x_{k-1}] - f [x_0, x_1, \dots, x_{k-2}, x_{k}] } { x_{k-1} - x_{k} }
\end{align}
编程实现时,\eqref{E:1} 式更为方便。令 $d_{i,j} = f [x_i, x_{i+1}, \dots, x_j] $,则有
\[
d_{i,j} = \frac{d_{i,j-1} - d_{i+1, j} } {x_i - x_j}
\]