ABC #150 E. Change a Little Bit

题目

经过一番分析,问题归为求 \(\sum_{i=0}^{n} \binom{n}{i} (i+1)\)

考虑多项式 \(p(x) := \sum_{i=0}^{n} \binom{n}{i} (i+1)x^{i}\),所求即 \(p(1)\)
注意到 \(p(x) = \sum_{i=0}^{n} \binom{n}{i} (x^{i + 1})' = (\sum_{i=0}^{n} \binom{n}{i} x^{i + 1})'\)
\(\sum_{i=0}^{n} \binom{n}{i} x^{i + 1} = x \sum_{i=0}^{n} \binom{n}{i} x^{i} = x(x+1)^{n}\)
\(p(x) = (x(x+1)^{n})' = (x+1)^{n} + nx(x+1)^{n-1}\),于是 \(p(1) = 2^{n} + n2^{n - 1}\)

\(\sum_{i=0}^{n} \binom{n}{i} (i+1) = 2^{n} + \sum_{i=0}^{n} \binom{n}{i} i\),于是有 \(\sum_{i=0}^{n} \binom{n}{i} i = n2^{n-1}\)

posted @ 2020-01-11 03:16  Pat  阅读(342)  评论(0编辑  收藏  举报