『树上匹配 树形dp』
<更新提示>
<第一次更新>
<正文>
树上匹配
Description
懒惰的温温今天上班也在偷懒。盯着窗外发呆的温温发现,透过窗户正巧能看到一棵 n 个节点的树。一棵 n 个节点的树包含 n-1 条边,且 n 个节点是联通的。树上两点之间的距 离即两点之间的最短路径包含的边数。
突发奇想的温温想要选择一个树上的边集(可以为空)删除, 使得删除后剩下的图的 最大匹配是唯一的。温温想要知道满足条件的边集的数量。满足条件的边集数量可能很多, 请对 998244353 取模。
图的一个匹配是图的一个边子集,满足条件任意两条边都不依附于同一个节点。图的所 有匹配中,边数最多的匹配即为图的最大匹配。
Input Format
第一行一个整数 n。
接下来 n-1 行每行两个整数 ai, bi,表示节点 ai 和 bi 之间存在一条边。
2 ≤ n ≤ 3000 for 40%
2 ≤ n ≤ 300000 for 100%
Output Format
输出一个整数,表示所求的满足条件的边集数量,对 998244353 取模
Sample Input
4
1 2
1 3
1 4
Sample Output
4
解析
先转换题意:最大匹配唯一其实等价于图中的一个点要么孤立,要么属于最大匹配。
这个条件的必要性是显然的,也就是说,最大匹配唯一,该条件一定满足。同样我们也可以证明该条件的充分性:反证法,假设存在一个点,它既不孤立也不属于最大匹配,并且这个图的最大匹配唯一。我们分两种情况讨论:
\(1.\) 这个点连向的点属于最大匹配,那就与最大匹配的唯一性矛盾
\(2.\) 这个点连向的点不属于最大匹配,那就与最大匹配的极大性矛盾
所以这两个命题是等价的。
那么我们就可以考虑树形\(dp\)计数。设\(f1[x]\)代表节点\(x\)等待他的父节点与他匹配,子树\(x\)的方案数,\(f2[x]\)代表节点\(x\)孤立,子树\(x\)的方案数,\(f3[x]\)代表节点\(x\)已经与某一个儿子匹配,子树的\(x\)的方案数。然后列状态转移方程:
为什么\(f3\)都要乘\(2\),是因为当前节点\(x\)与\(f3\)这种完成状态之间的边可连可不连。关于第三个状态转移方程,其含义为选一个点\(y\)的\(f1\)状态与其匹配,剩下的同理随便选。
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N = 300020;
const long long Mod = 998244353;
struct edge { int ver,next; } e[N*2];
int n,t,Head[N];
long long f1[N],f2[N],f3[N];
// f1 means which node is waiting mathcing
// f2 means which node is isolated
// f3 means which node has already matched
inline void insert(int x,int y)
{
e[++t] = (edge){y,Head[x]} , Head[x] = t;
e[++t] = (edge){x,Head[y]} , Head[y] = t;
}
inline void input(void)
{
scanf("%d",&n);
for ( int i = 1; i < n; i++ )
{
int x,y;
scanf("%d%d",&x,&y);
insert( x , y );
}
}
inline long long power(long long a,long long b)
{
long long res = 1;
while ( b )
{
if ( 1 & b ) res = res * a % Mod;
a = a * a % Mod , b >>= 1;
}
return res;
}
inline void mul(long long &a,long long b) { a = a * b % Mod; }
inline void add(long long &a,long long b) { a += b; if ( a >= Mod ) a -= Mod; }
inline void dp(int x,int f)
{
f1[x] = f2[x] = 1LL;
long long val = 1LL;
for ( int i = Head[x]; i; i = e[i].next )
{
int y = e[i].ver;
if ( y == f ) continue;
dp( y , x );
mul( f1[x] , ( f2[y] + 2 * f3[y] ) % Mod );
mul( f2[x] , ( f2[y] + f3[y] ) % Mod );
mul( val , ( f2[y] + 2 * f3[y] ) % Mod );
}
for ( int i = Head[x]; i; i = e[i].next )
{
int y = e[i].ver;
if ( y == f ) continue;
long long inv = power( f2[y] + 2 * f3[y] , Mod-2 );
long long sum = val;
mul( sum , inv ) , mul( sum , f1[y] );
add( f3[x] , sum );
}
}
int main(void)
{
input();
dp( 1 , 0 );
printf("%lld\n", ( f2[1] + f3[1] ) % Mod );
return 0;
}
<后记>