『金字塔 区间dp』
<更新提示>
<第一次更新>
<正文>
金字塔
Description
虽然探索金字塔是极其老套的剧情,但是这一队 探险家还是到了某金字塔脚下。经过多年的研究,科 学家对这座金字塔的内部结构已经有所了解。首先, 金字塔由若干房间组成,房间之间连有通道。如果把 房间看做节点,通道看做边的话,整个金字塔呈现一 个有根树结构,节点的子树之间有序,金字塔有唯一 的一个入口通向树根。并且,每个房间的墙壁都涂有 若干种颜色的一种。
探险队员打算进一步了解金字塔的结构,为此,他们使用了一种特殊设计的机器人。这 种机器人会从入口进入金字塔,之后对金字塔进行深度优先遍历。机器人每进入一个房间(无 论是第一次进入还是返回),都会记录这个房间的颜色。最后,机器人会从入口退出金字塔。 显然,机器人会访问每个房间至少一次,并且穿越每条通道恰好两次(两个方向各一次), 然后,机器人会得到一个颜色序列。但是,探险队员发现这个颜色序列并不能唯一确定金字 塔的结构。现在他们想请你帮助他们计算,对于一个给定的颜色序列,有多少种可能的结构 会得到这个序列。由于结果可能会非常大,你只需要输出答案对10^9 取模之后的值。
Input Format
输入文件包含一行,含有一个字符串,表示机器人得到的颜色序列。
Output Format
输出一个整数表示答案。
Sample Input
ABABABA
Sample Output
5
解析
在树形结构中,一棵子树可以对应一个序列区间上的区间,所以不难想到可以使用区间\(dp\)来计数,状态即为:\(f[l][r]\)代表字符串中\([l,r]\)这一段对应的方案数。
对于区间\([l,r]\)所对应的子树,我们考虑如何进行划分。显然,对应的一个根节点棵可能有很多个子节点,如果枚举每一个子树的划分点就会超时,换一种思路,我们枚举区间\([l,r]\)第一棵子树的位置,假设有划分点\(mid\),且\(s[l]=s[mid]\),则\([l+1,mid-1]\)就恰好可以对应一个子树,\(s[l]\)和\(s[mid]\)就是进出时产生的字符。而剩余部分\([mid,r]\)也就刚好对应了一个子问题,直接将方案数累加即可。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
const int N = 320 , Mod = 1e9;
int n; char a[N];
long long f[N][N];
inline void input(void)
{
scanf("%s",a+1);
n = strlen( a+1 );
}
inline void dp(void)
{
memset( f , 0x00 , sizeof f );
for (int i=1;i<=n;i++) f[i][i] = 1;
for (int len=3;len<=n;len++)
{
for (int l=1;l+len-1<=n;l++)
{
int r = l+len-1;
if ( a[l] != a[r] ) continue;
f[l][r] = f[l+1][r-1];
for (int mid=l+2;mid<=r-2;mid++)
if ( a[l] == a[mid] )
f[l][r] = ( f[l][r] + f[l+1][mid-1] * f[mid][r] % Mod ) % Mod;
}
}
}
int main(void)
{
input();
dp();
printf("%lld\n",f[1][n]);
return 0;
}
<后记>