『骑士精神 IDA*』

<更新提示>

<第一次更新>


<正文>

骑士精神(SCOI2005)

Description

在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位。在任何时候一个骑士都能按照骑 士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2,纵坐标相差为1的格子)移动到空 位上。

给定一个初始的棋盘,怎样才能经过移动变成如下目标棋盘:

enter image description here

为了体现出骑士精神,他们必须以最少的步 数完成任务。

Input Format

第一行有一个正整数T(T<=10),表示一共有N组数据。接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士。*表示空位。两组数据之间没有空行。

Output Format

对于每组数据都输出一行。如果能在15步以内(包括15步)到达目标状态,则输出步数,否则输出-1。

Sample Input

2
10110
01*11
10111
01001
00000
01011
110*1
01110
01010
00100

Sample Output

7
-1

解析

骑士的移动方式就是中国象棋中马的移动方式,可以使用方位数组处理,我们不难到这样一个简单的\(dfs\)算法:搜索尝试对每一头马进行合法的移动,并直接对目标状态进行匹配。

由于马的数量较多,显然有很多移动是不合法的。每一次合法的移动只可能与唯一的空格交换位置,所以我们改变搜索策略,枚举空格的移动。

题目中明显给出了步数不大于十五的限制,所以我们不妨使用迭代加深的\(dfs\)算法。但是本题使用该算法仍然会超时,我们需要改进为\(IDA^*\)算法,可以如下简单地设置估价函数:

\[f(s)=\sum_{s_{i,j}\ !=goal_{i,j}}1 \]

即:当前状态与目标状态存在差异的位置个数,可以保证实际步数大于等于预估步数。

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
#define mset(name,val) memset(name,val,sizeof name)
#define filein(str) freopen(str".in","r",stdin)
#define fileout(str) freopen(str".out","w",stdout)
const int T=15,INF=0x3f3f3f3f;
const int dx[]={1,-1,2,-2,1,-1,2,-2},dy[]={2,2,1,1,-2,-2,-1,-1};
const int goal[7][7]=
{
    {0,0,0,0,0,0},
    {0,1,1,1,1,1},
    {0,0,1,1,1,1},
    {0,0,0,2,1,1},
    {0,0,0,0,0,1},
    {0,0,0,0,0,0}
};
int Map[10][10],beginx,beginy,ans=INF,Maxdep;
inline void input(void)
{
	for(int i=1;i<=5;i++)
	{
		for(int j=1;j<=5;j++)
		{
			char c=' ';
			while(isspace(c))c=getchar();
			if(c=='*')Map[i][j]=2,beginx=i,beginy=j;
			else Map[i][j]=c-'0';
		}
	}
}
inline int fspend(void)
{
	int res=0;
	for(int i=1;i<=5;i++)
		for(int j=1;j<=5;j++)
			if(Map[i][j]!=goal[i][j])
				res++;
	return res;
}
inline bool dfs(int x,int y,int dep)
{
	if(dep==Maxdep)
	{
		if(!fspend())ans=dep;
		return true;
	}
	for(int i=0;i<8;i++)
	{
		int tx=x+dx[i],ty=y+dy[i];
		if(tx<1||ty<1||tx>5||ty>5)continue;
		swap(Map[x][y],Map[tx][ty]);
		if(fspend()+dep<=Maxdep)
			if(dfs(tx,ty,dep+1))return true; 
		swap(Map[tx][ty],Map[x][y]);
	}
	return false;
}
int main(void)
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		input();
		ans=0;
		for(Maxdep=1;Maxdep<=15;Maxdep++)
		{
			if(dfs(beginx,beginy,0))
			{
				printf("%d\n",ans);
				break;
			}
		}
		if(!ans)printf("-1\n");
	}
	return 0;
}

<后记>

posted @ 2019-03-27 20:57  Parsnip  阅读(299)  评论(0编辑  收藏  举报