『最小表示法 Necklace』

<更新提示>

<第一次更新>


<正文>

最小表示法

这是一个简单的字符串算法,其解决的问题如下:

给定一个字符串\(S\),长度为\(n\),如果把它的最后一个字符不断放到最前面,会得到\(n\)个不同的字符串,那么我们称这\(n\)个字符串是循环同构的。这\(n\)个字符串中字典序最小的一个,我们就称为\(S\)的最小表示。

\(For\ example:\)

\(S=abcda,S_1=aabcd,S_2=daabc,S_3=cdaab,S_4=bcdaa\)

其中,\(S\)的最小表示为\(S_1\)

了解了概念以后,我们将介绍一种算法,可以在\(O(n)\)的时间内求出一个字符串的最小表示。

对于一个环,最朴素的方法就是复制一倍接在原序列后面,这里我们就要用到这种方法:令字符串$$S'i=\begin{cases}1 \leq i\leq n ,S_i\n<i \leq 2n ,S\end{cases}$$

然后,利用两个指针\(i,j\)扫描字符串\(S'\),其具体方法如下:

1.初始化\(i=1,j=2\)
2.直接向后扫描,比较两个循环同构串\(S'(i,i+n-1),S'(j,j+n-1)\)
2.(1) 如果扫描了\(n\)个字符两个串仍然相等,则说明这个字符串只由一个字符构成,任意位置开头都是最小表示
2.(2) 找到位置\(S'_{i+k} != S'_{j+k}\),若\(S'_{i+k} > S'_{j+k}\),则说明位置\(j\)更优,更新位置\(i=i+k+1\),若\(S'_{i+k} < S'_{j+k}\),则说明位置\(i\)更优,更新位置\(j=j+k+1\)
3.若\(i>n\),则说明位置\(j\)为最小表示,若\(j>n\),则说明位置\(i\)为最小表示

为什么\(S'_{i+k} > S'_{j+k}\)时,直接将\(i\)更新为\(i+k+1\)呢,相信这是最大的一个疑问。

\(Explain:\)

\(S'_{i+k} > S'_{j+k}\)时,显然\(S'_i\)不是最小表示,因为存在一个更优的最小表示\(S'_j\)。然而,\(S'_{i+p}(1 \leq p \leq k)\)均不是最小表示,对于任意的一个\(S'_{i+p}\),一定也存在一个\(S'_{j+p}\)比它更优,因为它们不断向后比较,同样会在\(i+k\)处发现有\(S'_{i+k} > S'_{j+k}\)。这样就说明了当一个\(i\)\(i+k\)的位置发现不优时,\(i+k\)以前的也均不优,直接将\(i\)更新为\(i+k+1\)即可。

同理,发现\(j\)不优时也是一样的。

\(Code:\)

inline void solve(void)
{
	int ans;
	int i=1,j=2,k;
	while(i<=n&&j<=n)
	{
		for(k=0;k<=n&&s[i+k]==s[j+k];k++);
		if(k==n)break;
		if(a[i+k]>a[j+k])
		{
			i=i+k+1;
			if(i==j)i++;
		}
		else
		{
			j=j+k+1;
			if(i==j)j++;
		}
	}
	ans=min(i,j);
}

Necklace

Description

有一天,袁同学绵了一条价值连城宝石项链,但是,一个严重的问题是,他竟然忘记了项链的主人是谁!在得知此事后,很多人向袁同学发来了很多邮件,都说项链是自己的,要求他归还(显然其中最多只有一个人说了真话)。袁同学要求每个人都写了一段关于自己项链的描述: 项链上的宝石用数字0至9来标示。一个对于项链的表示就是从项链的某个宝石开始,顺指针绕一圈,沿途记下经过的宝石,比如如下项链: 1-2-3-4   

它的可能的四种表示是0123、1230、2301、3012。

袁☆同学现在心急如焚,于是他找到了你,希望你能够编一个程序,判断两个给定的描述是否代表同一个项链(注意,项链是不会翻转的)。

给定两个项链的表示,判断他们是否可能是一条项链。

Input Format

输入文件只有两行,每行一个由0至9组成的字符串,描述一个项链的表示(保证项链的长度是相等的)。

Output Format

如果两条项链不可能同构,那么输出’No’,否则的话,第一行输出一个’Yes’

第二行输出该项链的字典序最小的表示。 设L = 项链长度,L <= 1000000。

Sample Input

2234342423
2423223434

Sample Output

Yes
2234342423

解析

这就是一道最小表示法模板题,直接将两个串分别转为最小表示法,再比较是否相同即可。如果相同,直接将最小表示法输出。

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
const int N=1000000+20;
int lena,lenb;
char a[N*2],b[N*2],Mina[N],Minb[N];
inline void input(void)
{
	scanf("%s",a+1);
	scanf("%s",b+1);
	lena=strlen(a+1);
	lenb=strlen(b+1);
	for(int i=1;i<=lena;i++)
		a[lena+i]=a[i];
	for(int i=1;i<=lenb;i++)
		b[lenb+i]=b[i];
}
inline void solvea(void)
{
	int ans;
	int i=1,j=2,k;
	while(i<=lena&&j<=lena)
	{
		for(k=0;k<=lena&&a[i+k]==a[j+k];k++);
		if(k==lena)break;
		if(a[i+k]>a[j+k])
		{
			i=i+k+1;
			if(i==j)i++;
		}
		else
		{
			j=j+k+1;
			if(i==j)j++;
		}
	}
	ans=min(i,j);
	for(int p=1;p<=lena;p++)
		Mina[p]=a[ans+p-1];
}
inline void solveb(void)
{
	int ans;
	int i=1,j=2,k;
	while(i<=lenb&&j<=lenb)
	{
		for(k=0;k<=lenb&&b[i+k]==b[j+k];k++);
		if(k==lenb)break;
		if(b[i+k]>b[j+k])
		{
			i=i+k+1;
			if(i==j)i++;
		}
		else
		{
			j=j+k+1;
			if(i==j)j++;
		}
	}
	ans=min(i,j);
	for(int p=1;p<=lenb;p++)
		Minb[p]=b[ans+p-1];
}
int main()
{
	input();
	solvea();
	solveb();
	int flag=1;
	if(lena!=lenb)
	{
		printf("No\n");
		return 0;
	}
	for(int i=1;i<=lena;i++)
		if(Mina[i]^Minb[i])flag=0;
	if(!flag)
	{
		printf("No\n");
		return 0;
	}
	else
	{
		printf("Yes\n");
		for(int i=1;i<=lena;i++)
			printf("%c",Mina[i]);
		puts("");
	}
	return 0;
}

<后记>

posted @ 2019-03-21 20:32  Parsnip  阅读(317)  评论(0编辑  收藏  举报