『The Captain 最短路建图优化』
<更新提示>
<第一次更新>
<正文>
The Captain(BZOJ 4152)
Description
给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。
Input Format
第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数xi,yi(0<=xi,yi<=10^9),依次表示每个点的坐标。
Output Format
一个整数,即最小费用。
Sample Input
5
2 2
1 1
4 5
7 1
6 7
Sample Output
2
解析
假如说我们直接将平面中的每一个点视为图中的每一个点的话,这就是一道最短路问题。但是显而易见的是我们需要连\(n^2\)条边,这是一定会超时的,主要考虑如何建图优化。
手推几个样例可以发现图中有很多无用的边存在,我们考虑证明什么情况下的连边是不必要的。
证明:
对于任意两点\(P,Q\),其距离为\(\min\{\Delta x,\Delta y\}\).
- 距离取\(\Delta x\):
假如在横坐标意义上\(P,Q\)有中间点\(M\).
- \(PM\)取\(\Delta x_{pm}\),\(MQ\)取\(\Delta x_{mq}\),则\(PQ\)连边和\(PM\),\(MQ\)等价.
- \(PM\)取\(\Delta x_{pm}\),\(MQ\)取\(\Delta y_{mq}\),由于\(\Delta y_{mq}<\Delta x_{mq}\),\(PQ\)连边大于\(PM\),\(MQ\).
- \(PM\)取\(\Delta y_{pm}\),\(MQ\)取\(\Delta x_{mq}\),由于\(\Delta y_{pm}<\Delta x_{pm}\),\(PQ\)连边大于\(PM\),\(MQ\).
- \(PM\)取\(\Delta y_{pm}\),\(MQ\)取\(\Delta y_{mq}\),由于\(\Delta y_{pm}<\Delta x_{pm}\),\(\Delta y_{mq}<\Delta x_{mq}\),\(PQ\)连边大于\(PM\),\(MQ\).
所以,当\(P,Q\)距离取\(\Delta x\),且横坐标意义上\(P,Q\)有中间点\(M\)时,\(PQ\)连边一定不能对最优解造成贡献。
- 距离取\(\Delta y\):
假如在纵坐标意义上\(P,Q\)有中间点\(M\),同理\(PQ\)连边一定不能对最优解造成贡献。
得出结论:当\(P,Q\)距离取\(\Delta x\),且横坐标意义上\(P,Q\)有中间点\(M\),或者距离取\(\Delta y\),纵坐标意义上\(P,Q\)有中间点\(M\)时,\(PQ\)连边一定不能对最优解造成贡献。
那么这就是不必要连的边。相反,则任意两点\(U,V\)距离取\(\Delta x\),且横坐标意义上\(U,V\)相邻,或者\(U,V\)距离取\(\Delta y\),且纵坐标意义上\(U,V\)相邻时,\(U,V\)连边是必要的。
那么我们把必要的边连起来就行了,这样的边至多有\(2n\)条,堆优化\(Dijkstra\)解决最短路问题。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
const int N=200000+80;
struct node{int num,x,y;}p[N];
struct edge{int ver,val,next;}e[N*4];
int n,t,Last[N*4],dis[N],vis[N];
inline bool cmp1(node p1,node p2){return p1.x<p2.x;}
inline bool cmp2(node p1,node p2){return p1.y<p2.y;}
inline bool check1(node p1,node p2){return p2.x-p1.x<=abs(p1.y-p2.y);}
inline bool check2(node p1,node p2){return p2.y-p1.y<abs(p1.x-p2.x);}
inline void insert(int x,int y,int v)
{
e[++t].val=v;e[t].ver=y;
e[t].next=Last[x];Last[x]=t;
}
inline void input(void)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
p[i].num=i;
}
}
inline void init(void)
{
sort(p+1,p+n+1,cmp1);
for(int i=1;i<n;i++)
{
if(check1(p[i],p[i+1]))
insert(p[i].num,p[i+1].num,p[i+1].x-p[i].x),insert(p[i+1].num,p[i].num,p[i+1].x-p[i].x);;
}
sort(p+1,p+n+1,cmp2);
for(int i=1;i<n;i++)
{
if(check2(p[i],p[i+1]))
insert(p[i].num,p[i+1].num,p[i+1].y-p[i].y),insert(p[i+1].num,p[i].num,p[i+1].y-p[i].y);
}
}
inline void dijkstra(void)
{
memset(dis,0x3f,sizeof dis);
priority_queue< pair<int,int>,vector< pair<int,int> >,greater< pair<int,int> > >Heap;
dis[1]=0;Heap.push(make_pair(0,1));
while(!Heap.empty())
{
int temp=Heap.top().second;
Heap.pop();
if(vis[temp])continue;
vis[temp]=true;
for(int i=Last[temp];i;i=e[i].next)
{
if(dis[e[i].ver]>dis[temp]+e[i].val)
{
dis[e[i].ver]=dis[temp]+e[i].val;
Heap.push(make_pair(dis[e[i].ver],e[i].ver));
}
}
}
}
int main(void)
{
input();
init();
dijkstra();
printf("%d\n",dis[n]);
return 0;
}
<后记>