Note_3.31
2019/4/1 奇奇怪怪的笔记
整理了一些之前没有写过的东西,把它们拼在一起,并没有什么逻辑可言qwq
FWT快速沃尔什变换
void FWT(int *a,const int n,int type)
{
for(int i=1;i<n;i<<=1)for(int j=0;j<n;j+=i<<1)for(k=0;k<len;++k)
{
int x=a[j+k],y=a[i+j+k];
a[j+k]=x;a[i+j+k]=(type*x+y)%P;
}
}
杜教筛
问题:求\(S(n)=\sum_{i=1}^{n}f(i)\)
考虑:
构造函数\(g(x)\)
所以:
要找到一个使得\(g\)和\(f*g\)的前缀和都很好算的。
实现:将\(S(n)\)存入数组\(⌊\frac{n}{x}⌋\)位,防止冲突
为什么不会冲突呢,考虑\(\frac{n}{i}\)的\(O(\sqrt n)\)个的商,这些商的商,必然属于\(O(\sqrt n)\)个的商中
为什么呢?
假设:\(n=kd+r,r\leq d\\k=le+s,s\leq e\)
那么就有:\(n=(ed)l+sd+r,sd+r\leq ed\)
所以我们其实只访问了\(O(\sqrt n)\)个的\(S(i)\),把它们都存储在\(⌊\frac{n}{i}⌋\)
这个值其实是满足\([\frac{n}{i}]=x\)的最大\(x\)值,显然是不会冲突的
typedef pair<ll, int> pli;
const int B = 1664510, S = 1291;
int n, T;
ll SumPhi[B + 5], ResPhi[S + 5];
int SumMu[B + 5], ResMu[S + 5];
namespace Pac
{
void init()//初始化:线筛求出前B=n^{3/2}
{
static int cnt, vis[B + 5], prime[B + 5], phi[B + 5], mu[B + 5];
phi[1] = mu[1] = 1;
for (int i = 2; i <= B; i++)
{
if (!vis[i])
{
prime[cnt++] = i;
phi[i] = i - 1;
mu[i] = -1;
}
for (int j = 0, t; j < cnt && (t = i * prime[j]) <= B; j++)
{
vis[t] = 1;
if (i % prime[j] == 0)
{
phi[t] = phi[i] * prime[j];
mu[t] = 0;
break;
}
phi[t] = phi[i] * (prime[j] - 1);
mu[t] = -mu[i];
}
}
for (int i = 1; i <= B; i++)
{
SumPhi[i] = SumPhi[i - 1] + phi[i];
SumMu[i] = SumMu[i - 1] + mu[i];
}
}
bool vis[S + 5];
pli GetSum(const int x) //求和部分
{
if (x <= B) return pli(SumPhi[x], SumMu[x]);
int t = n / x;
if (!vis[t])
{
vis[t] = 1;
ResPhi[t] = ((ll)x + 1) * x / 2;//phi*1=id_1
ResMu[t] = 1;//mu*1=ep
for (uint l = 2, r; l <= x; l = r + 1)
{
pli res = GetSum(x / l);
r = x / (x / l);
ResPhi[t] -= (r - l + 1) * res.first;
ResMu[t] -= (r - l + 1) * res.second;
}
}
return pli(ResPhi[t], ResMu[t]);
}
void work()
{
init();
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
memset(vis + 1, 0, sizeof(bool) * n / B);
pli ans = GetSum(n);
printf("%lld %d\n", ans.first, ans.second);
}
}
}
最小圆覆盖[随机增量法]
随机大法好
只需要确定三个点,答案即为它们的外接圆
每次加点,如果不属于之前的圆,再枚举另外两个点,确定圆即可
看上去是\(O(n^3)\)的,实际期望是\(O(n)\)
#include<bits/stdc++.h>
#define ll long long
#define ld long double
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define reg register
using namespace std;
const int MN=100005;
const ld eps=1e-12;
int N;ld R;
struct P
{
ld x,y;
P(ld _x=0,ld _y=0):x(_x),y(_y){}
}a[MN],O;
inline P operator + (const P&o,const P&oo){return P(o.x+oo.x,o.y+oo.y);}
inline P operator - (const P&o,const P&oo){return P(o.x-oo.x,o.y-oo.y);}
inline P operator * (const P&o,const ld k){return P(o.x*k,o.y*k);}
inline ld dot(const P&o,const P&oo){return o.x*oo.x+o.y*oo.y;}
inline ld len(const P&o){return sqrt(dot(o,o));}
inline ld dis(const P&o,const P&oo){return sqrt((o.x-oo.x)*(o.x-oo.x)+(o.y-oo.y)*(o.y-oo.y));}
inline ld cross(const P&o,const P&oo){return o.x*oo.y-o.y*oo.x;}
inline P Mid(const P&A,const P&B){return P((A.x+B.x)/2,(A.y+B.y)/2);}
//中垂线
inline void Vertical(const P&A,const P&B,P&p,P&v){p=Mid(A,B);P tmp=B-A;v.x=-tmp.y,v.y=tmp.x;}
//外接圆
/*
P=A+(CA x CD)/(CD x AB) AB
*/
inline void Circle(const P&A,const P&B,const P&C)
{
P p,q,v,w;Vertical(A,B,p,v),Vertical(A,C,q,w);
P u=p-q;
ld t=cross(w,u)/cross(v,w);
O=p+v*t,R=dis(O,A);
}
int main()
{
scanf("%d",&N);
reg int i,j,k;
for(i=1;i<=N;++i)scanf("%Lf%Lf",&a[i].x,&a[i].y);
random_shuffle(a+1,a+N);
O=a[1],R=0;
for(i=2;i<=N;++i)if(dis(a[i],O)>R)
{
O=a[i],R=0;
for(j=1;j<i;++j)if(dis(a[j],O)>R)
{
O=Mid(a[i],a[j]),R=dis(a[i],O);
for(k=1;k<j;++k)if(dis(a[k],O)>R)Circle(a[i],a[j],a[k]);
}
}
printf("%.10f\n%.10f %.10f",(double)R,(double)O.x,(double)O.y);
return 0;
}
MTT(任意模数NTT)
求\(F(x)*G(x) \mod a\)
\(1\leq n,m\leq 10^5,0\leq f_i,g_i\leq10^9,2\leq p\leq 10^9+9\)
法一:
卷积后每一位不超过\(10^{24}\)
考虑对三个模数:\(469762049,998244353,1004535809\),分别作\(NTT\),然后采用\(CRT\)合并
这\(3\)个质数的原根均为\(3\)
考虑\(CRT\)合并怎么做
先合并前两个数,再合并后面两个
但是要用快速乘:
inline ll mul(ll a, ll b,const ll p)
{
static const long double eps = 1e-8;
a = (a % p + p) % p;
b = (b % p + p) % p;
return ((a * b - ll((long double)a / p * b + eps) * p) % p + p) % p;
}
完整代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define reg register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int N=1<<20|5,mod[]={469762049,998244353,1004535809},g=3;
#define Mul(a,b,p) (1ll*(a)*(b)%(p))
inline int fpow(int x,int m,int p){int r=1;for(;m;m>>=1,x=Mul(x,x,p))if(m&1)r=Mul(r,x,p);return r;}
int pos[N],MOD,len,di,F[N],G[N];
struct Polynomial
{
int P,invg,r[N];
void NTT(int *a,int n,int type)
{
reg int i,j,p,k,w,wn,X,Y;
for(i=0;i<n;++i) if(i<pos[i]) std::swap(a[i],a[pos[i]]);
for(i=1;i<n;i<<=1)
{
wn=fpow(type>0?g:invg,(P-1)/(i<<1),P);
for(p=i<<1,j=0;j<n;j+=p)
for(w=1,k=0;k<i;++k,w=Mul(w,wn,P))
{
X=a[j+k];Y=Mul(w,a[j+k+i],P);
a[j+k]=(X+Y)%P;a[j+k+i]=(X-Y+P)%P;
}
}
reg int invn=fpow(n,P-2,P);
if(type==-1)for(i=0;i<n;++i)a[i]=Mul(a[i],invn,P);
}
void combine(int *A,int *B,int n)
{
memcpy(F,A,sizeof(int[n]));
memcpy(G,B,sizeof(int[n]));
NTT(F,n,1),NTT(G,n,1);
for(reg int i=0;i<n;++i)r[i]=Mul(F[i],G[i],P);
NTT(r,n,-1);
}
}poly[3];
int a[N],b[N];
inline ll mul(ll a,ll b,ll p)
{
static const long double eps=1e-8;
a=(a%p+p)%p;b=(b%p+p)%p;
return ((a*b-(ll)((long double)a/p*b+eps)*p)%p+p)%p;
}
//t0=a0p1 inv(p1,p0),a1p0 inv(p0,p1) mod p0p1
//t1=(a2-t0)p0^{-1}p1^{-1}
//ans=t1p0p1+t0
void CRT(int n)
{
ll t0,t1;
int p0=mod[0],p1=mod[1],p2=mod[2];
int *u=poly[0].r,*v=poly[1].r,*w=poly[2].r;
ll p0p1=1ll*p0*p1;
ll _p0p1=mul(fpow(p0,p2-2,p2),fpow(p1,p2-2,p2),p2);
ll _0=mul(p1,fpow(p1,p0-2,p0),p0p1);
ll _1=mul(p0,fpow(p0,p1-2,p1),p0p1);
for(reg int i=0;i<n;++i)
{
t0=(mul(u[i],_0,p0p1)+mul(v[i],_1,p0p1))%p0p1;
t1=mul((w[i]-t0%p2+p2)%p2,_p0p1,p2);
printf("%d ",int((mul(t1,p0p1,MOD)+t0%MOD)%MOD));
}
}
int main()
{
reg int n,m,i;
n=read()+1;m=read()+1;MOD=read();
for(i=0;i<n;++i) a[i]=read();
for(i=0;i<m;++i) b[i]=read();
for(len=1;len<n+m;len<<=1,di++);
for(i=0;i<len;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(di-1));
for(i=0;i<3;++i)
{
poly[i].P=mod[i];
poly[i].invg=fpow(g,mod[i]-2,mod[i]);
poly[i].combine(a,b,len);
}
CRT(n+m-1);
return 0;
}
法二:
设\(p=\sqrt p\),向上取整
把每个数表示成\(X=a_xp+b_x\)
那么就有\(ans_i=\sum_{x+y=i}a_xa_yp^2+(a_xb_y+b_xa_y)p+b_xb_y\)
分别用\(FFT\)即可
大概就这些?
接下几天会陆续补齐多项式全家桶(其实只是为了更熟练地打\(FFT\) )吧,不做一只鸽子,嗯呐
Blog来自PaperCloud,未经允许,请勿转载,TKS!