[Noi2016]国王饮水记
传送门
Description
有\(n\)个数,最多\(k\)次操作,每次可选择一些数,使得它们全都变成它们的平均数
最大化第一个数的值
保留\(p\)位小数
\(n\leq 8000,p\leq3000\)
Solution
因为对精度的要求,套用高精度小数类的话,单次计算为\(O(p)\)
因此我们动规的过程中,采用记录决策点,并用
long double
记录\(F\)数组的值,最后在进行计算答案根据结论,最后的方案一定是按照从小到大的顺序依次合并比\(h_1\)大的数,每次操作的包含\(h_1\)
将原数组(只考虑比\(h_1\)大的那些数字)
设\(a_i=\sum_{j=1}^{i}h_i\)
考虑\(dp\)转移
\[f_{k,i}=Max[\frac{a_i-(a_j-f_{k-1,j})}{i-(j-1)}] \]所以相当于求\((i,a_i)\)与所有\((j-1,a_j-f_{k-1,j})\)的最大斜率
显然这样的点一定会在\((j-1,a_j-f_{k-1,j})\)的下凸壳上
然后这个显然满足决策单调性
因为设\(A(i+1,a_i+h_{i+1})\),\(B(i,a_i)\),\(B\)的决策点是\(P(j-1,a_j-f_j)\),根据\(h_i\)按照从小到大的顺序排列,显然有\(k_{AP}>k_{BP}\),那么\(AP\)就与这个下凸壳相交,需要将决策点右移
最后,发现每次选的数的数量都不大于上一次,否则,将最小的改为上一次合并一定更加优秀
然后也不知道怎么证明的,大于\(1\)的段不超过\(14\)段,所以只要\(dp\)出前\(14\)层就可以了
Code
#include<bits/stdc++.h>
#define ll long long
#define ld long double
#define reg register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
// ---------- decimal lib start ----------
const int PREC = 3005;
class Decimal {
public:
Decimal();
Decimal(const std::string &s);
Decimal(const char *s);
Decimal(int x);
Decimal(long long x);
Decimal(double x);
bool is_zero() const;
// p (p > 0) is the number of digits after the decimal point
std::string to_string(int p) const;
double to_double() const;
friend Decimal operator + (const Decimal &a, const Decimal &b);
friend Decimal operator + (const Decimal &a, int x);
friend Decimal operator + (int x, const Decimal &a);
friend Decimal operator + (const Decimal &a, long long x);
friend Decimal operator + (long long x, const Decimal &a);
friend Decimal operator + (const Decimal &a, double x);
friend Decimal operator + (double x, const Decimal &a);
friend Decimal operator - (const Decimal &a, const Decimal &b);
friend Decimal operator - (const Decimal &a, int x);
friend Decimal operator - (int x, const Decimal &a);
friend Decimal operator - (const Decimal &a, long long x);
friend Decimal operator - (long long x, const Decimal &a);
friend Decimal operator - (const Decimal &a, double x);
friend Decimal operator - (double x, const Decimal &a);
friend Decimal operator * (const Decimal &a, int x);
friend Decimal operator * (int x, const Decimal &a);
friend Decimal operator / (const Decimal &a, int x);
friend bool operator < (const Decimal &a, const Decimal &b);
friend bool operator > (const Decimal &a, const Decimal &b);
friend bool operator <= (const Decimal &a, const Decimal &b);
friend bool operator >= (const Decimal &a, const Decimal &b);
friend bool operator == (const Decimal &a, const Decimal &b);
friend bool operator != (const Decimal &a, const Decimal &b);
Decimal & operator += (int x);
Decimal & operator += (long long x);
Decimal & operator += (double x);
Decimal & operator += (const Decimal &b);
Decimal & operator -= (int x);
Decimal & operator -= (long long x);
Decimal & operator -= (double x);
Decimal & operator -= (const Decimal &b);
Decimal & operator *= (int x);
Decimal & operator /= (int x);
friend Decimal operator - (const Decimal &a);
// These can't be called
friend Decimal operator * (const Decimal &a, double x);
friend Decimal operator * (double x, const Decimal &a);
friend Decimal operator / (const Decimal &a, double x);
Decimal & operator *= (double x);
Decimal & operator /= (double x);
private:
static const int len = PREC / 9 + 1;
static const int mo = 1000000000;
static void append_to_string(std::string &s, long long x);
bool is_neg;
long long integer;
int data[len];
void init_zero();
void init(const char *s);
};
Decimal::Decimal() {
this->init_zero();
}
Decimal::Decimal(const char *s) {
this->init(s);
}
Decimal::Decimal(const std::string &s) {
this->init(s.c_str());
}
Decimal::Decimal(int x) {
this->init_zero();
if (x < 0) {
is_neg = true;
x = -x;
}
integer = x;
}
Decimal::Decimal(long long x) {
this->init_zero();
if (x < 0) {
is_neg = true;
x = -x;
}
integer = x;
}
Decimal::Decimal(double x) {
this->init_zero();
if (x < 0) {
is_neg = true;
x = -x;
}
integer = (long long)x;
x -= integer;
for (int i = 0; i < len; i++) {
x *= mo;
if (x < 0) x = 0;
data[i] = (int)x;
x -= data[i];
}
}
void Decimal::init_zero() {
is_neg = false;
integer = 0;
memset(data, 0, len * sizeof(int));
}
bool Decimal::is_zero() const {
if (integer) return false;
for (int i = 0; i < len; i++) {
if (data[i]) return false;
}
return true;
}
void Decimal::init(const char *s) {
this->init_zero();
is_neg = false;
integer = 0;
// find the first digit or the negative sign
while (*s != 0) {
if (*s == '-') {
is_neg = true;
++s;
break;
} else if (*s >= 48 && *s <= 57) {
break;
}
++s;
}
// read the integer part
while (*s >= 48 && *s <= 57) {
integer = integer * 10 + *s - 48;
++s;
}
// read the decimal part
if (*s == '.') {
int pos = 0;
int x = mo / 10;
++s;
while (pos < len && *s >= 48 && *s <= 57) {
data[pos] += (*s - 48) * x;
++s;
x /= 10;
if (x == 0) {
++pos;
x = mo / 10;
}
}
}
}
void Decimal::append_to_string(std::string &s, long long x) {
if (x == 0) {
s.append(1, 48);
return;
}
char _[30];
int cnt = 0;
while (x) {
_[cnt++] = x % 10;
x /= 10;
}
while (cnt--) {
s.append(1, _[cnt] + 48);
}
}
std::string Decimal::to_string(int p) const {
std::string ret;
if (is_neg && !this->is_zero()) {
ret = "-";
}
append_to_string(ret, this->integer);
ret.append(1, '.');
for (int i = 0; i < len; i++) {
// append data[i] as "%09d"
int x = mo / 10;
int tmp = data[i];
while (x) {
ret.append(1, 48 + tmp / x);
tmp %= x;
x /= 10;
if (--p == 0) {
break;
}
}
if (p == 0) break;
}
if (p > 0) {
ret.append(p, '0');
}
return ret;
}
double Decimal::to_double() const {
double ret = integer;
double k = 1.0;
for (int i = 0; i < len; i++) {
k /= mo;
ret += k * data[i];
}
if (is_neg) {
ret = -ret;
}
return ret;
}
bool operator < (const Decimal &a, const Decimal &b) {
if (a.is_neg != b.is_neg) {
return a.is_neg && (!a.is_zero() || !b.is_zero());
} else if (!a.is_neg) {
// a, b >= 0
if (a.integer != b.integer) {
return a.integer < b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] < b.data[i];
}
}
return false;
} else {
// a, b <= 0
if (a.integer != b.integer) {
return a.integer > b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] > b.data[i];
}
}
return false;
}
}
bool operator > (const Decimal &a, const Decimal &b) {
if (a.is_neg != b.is_neg) {
return !a.is_neg && (!a.is_zero() || !b.is_zero());
} else if (!a.is_neg) {
// a, b >= 0
if (a.integer != b.integer) {
return a.integer > b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] > b.data[i];
}
}
return false;
} else {
// a, b <= 0
if (a.integer != b.integer) {
return a.integer < b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] < b.data[i];
}
}
return false;
}
}
bool operator <= (const Decimal &a, const Decimal &b) {
if (a.is_neg != b.is_neg) {
return a.is_neg || (a.is_zero() && b.is_zero());
} else if (!a.is_neg) {
// a, b >= 0
if (a.integer != b.integer) {
return a.integer < b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] < b.data[i];
}
}
return true;
} else {
// a, b <= 0
if (a.integer != b.integer) {
return a.integer > b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] > b.data[i];
}
}
return true;
}
}
bool operator >= (const Decimal &a, const Decimal &b) {
if (a.is_neg != b.is_neg) {
return !a.is_neg || (a.is_zero() && b.is_zero());
} else if (!a.is_neg) {
// a, b >= 0
if (a.integer != b.integer) {
return a.integer > b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] > b.data[i];
}
}
return true;
} else {
// a, b <= 0
if (a.integer != b.integer) {
return a.integer < b.integer;
}
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) {
return a.data[i] < b.data[i];
}
}
return true;
}
}
bool operator == (const Decimal &a, const Decimal &b) {
if (a.is_zero() && b.is_zero()) return true;
if (a.is_neg != b.is_neg) return false;
if (a.integer != b.integer) return false;
for (int i = 0; i < Decimal::len; i++) {
if (a.data[i] != b.data[i]) return false;
}
return true;
}
bool operator != (const Decimal &a, const Decimal &b) {
return !(a == b);
}
Decimal & Decimal::operator += (long long x) {
if (!is_neg) {
if (integer + x >= 0) {
integer += x;
} else {
bool last = false;
for (int i = len - 1; i >= 0; i--) {
if (last || data[i]) {
data[i] = mo - data[i] - last;
last = true;
} else {
last = false;
}
}
integer = -x - integer - last;
is_neg = true;
}
} else {
if (integer - x >= 0) {
integer -= x;
} else {
bool last = false;
for (int i = len - 1; i >= 0; i--) {
if (last || data[i]) {
data[i] = mo - data[i] - last;
last = true;
} else {
last = false;
}
}
integer = x - integer - last;
is_neg = false;
}
}
return *this;
}
Decimal & Decimal::operator += (int x) {
return *this += (long long)x;
}
Decimal & Decimal::operator -= (int x) {
return *this += (long long)-x;
}
Decimal & Decimal::operator -= (long long x) {
return *this += -x;
}
Decimal & Decimal::operator /= (int x) {
if (x < 0) {
is_neg ^= 1;
x = -x;
}
int last = integer % x;
integer /= x;
for (int i = 0; i < len; i++) {
long long tmp = 1LL * last * mo + data[i];
data[i] = tmp / x;
last = tmp - 1LL * data[i] * x;
}
if (is_neg && integer == 0) {
int i;
for (i = 0; i < len; i++) {
if (data[i] != 0) {
break;
}
}
if (i == len) {
is_neg = false;
}
}
return *this;
}
Decimal & Decimal::operator *= (int x) {
if (x < 0) {
is_neg ^= 1;
x = -x;
} else if (x == 0) {
init_zero();
return *this;
}
int last = 0;
for (int i = len - 1; i >= 0; i--) {
long long tmp = 1LL * data[i] * x + last;
last = tmp / mo;
data[i] = tmp - 1LL * last * mo;
}
integer = integer * x + last;
return *this;
}
Decimal operator - (const Decimal &a) {
Decimal ret = a;
// -0 = 0
if (!ret.is_neg && ret.integer == 0) {
int i;
for (i = 0; i < Decimal::len; i++) {
if (ret.data[i] != 0) break;
}
if (i < Decimal::len) {
ret.is_neg = true;
}
} else {
ret.is_neg ^= 1;
}
return ret;
}
Decimal operator + (const Decimal &a, int x) {
Decimal ret = a;
return ret += x;
}
Decimal operator + (int x, const Decimal &a) {
Decimal ret = a;
return ret += x;
}
Decimal operator + (const Decimal &a, long long x) {
Decimal ret = a;
return ret += x;
}
Decimal operator + (long long x, const Decimal &a) {
Decimal ret = a;
return ret += x;
}
Decimal operator - (const Decimal &a, int x) {
Decimal ret = a;
return ret -= x;
}
Decimal operator - (int x, const Decimal &a) {
return -(a - x);
}
Decimal operator - (const Decimal &a, long long x) {
Decimal ret = a;
return ret -= x;
}
Decimal operator - (long long x, const Decimal &a) {
return -(a - x);
}
Decimal operator * (const Decimal &a, int x) {
Decimal ret = a;
return ret *= x;
}
Decimal operator * (int x, const Decimal &a) {
Decimal ret = a;
return ret *= x;
}
Decimal operator / (const Decimal &a, int x) {
Decimal ret = a;
return ret /= x;
}
Decimal operator + (const Decimal &a, const Decimal &b) {
if (a.is_neg == b.is_neg) {
Decimal ret = a;
bool last = false;
for (int i = Decimal::len - 1; i >= 0; i--) {
ret.data[i] += b.data[i] + last;
if (ret.data[i] >= Decimal::mo) {
ret.data[i] -= Decimal::mo;
last = true;
} else {
last = false;
}
}
ret.integer += b.integer + last;
return ret;
} else if (!a.is_neg) {
// a - |b|
return a - -b;
} else {
// b - |a|
return b - -a;
}
}
Decimal operator - (const Decimal &a, const Decimal &b) {
if (!a.is_neg && !b.is_neg) {
if (a >= b) {
Decimal ret = a;
bool last = false;
for (int i = Decimal::len - 1; i >= 0; i--) {
ret.data[i] -= b.data[i] + last;
if (ret.data[i] < 0) {
ret.data[i] += Decimal::mo;
last = true;
} else {
last = false;
}
}
ret.integer -= b.integer + last;
return ret;
} else {
Decimal ret = b;
bool last = false;
for (int i = Decimal::len - 1; i >= 0; i--) {
ret.data[i] -= a.data[i] + last;
if (ret.data[i] < 0) {
ret.data[i] += Decimal::mo;
last = true;
} else {
last = false;
}
}
ret.integer -= a.integer + last;
ret.is_neg = true;
return ret;
}
} else if (a.is_neg && b.is_neg) {
// a - b = (-b) - (-a)
return -b - -a;
} else if (a.is_neg) {
// -|a| - b
return -(-a + b);
} else {
// a - -|b|
return a + -b;
}
}
Decimal operator + (const Decimal &a, double x) {
return a + Decimal(x);
}
Decimal operator + (double x, const Decimal &a) {
return Decimal(x) + a;
}
Decimal operator - (const Decimal &a, double x) {
return a - Decimal(x);
}
Decimal operator - (double x, const Decimal &a) {
return Decimal(x) - a;
}
Decimal & Decimal::operator += (double x) {
*this = *this + Decimal(x);
return *this;
}
Decimal & Decimal::operator -= (double x) {
*this = *this - Decimal(x);
return *this;
}
Decimal & Decimal::operator += (const Decimal &b) {
*this = *this + b;
return *this;
}
Decimal & Decimal::operator -= (const Decimal &b) {
*this = *this - b;
return *this;
}
// ---------- decimal lib end ----------
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
int n,k,p;
const int MN=10005;
ll a[MN],_1;
int from[20][MN];
ld f[20][MN];
Decimal ans;
struct Point{
ld x,y;
Point(ld _a=0,ld _b=0):x(_a),y(_b){}
ld sl(const Point&o){return (ld)(o.y-y)/(ld)(o.x-x);}
};
class xxx{
Point st[MN];
int hd,tl;
public:
void init(){hd=tl=1;st[1]=Point(-1,(ld)(-_1));}
void get(int K,int i)
{
Point cur=Point((ld)i,(ld)a[i]);
while(hd<tl&&st[hd+1].sl(cur)>st[hd].sl(cur))++hd;
from[K][i]=(int)st[hd].x+1.;
f[K][i]=st[hd].sl(cur);
}
void ins(int K,int j)
{
Point cur=Point((ld)j-1,(ld)(a[j]-f[K][j]));
while(hd<tl&&st[tl-1].sl(st[tl])>st[tl].sl(cur))--tl;
st[++tl]=cur;
}
}que;
void cal(int x,int step)
{
if(!x||!step)return;
cal(from[step][x],step-1);
ans=(ans+(a[x]-a[from[step][x]]))/(x-from[step][x]+1);
}
int main()
{
n=read()-1;k=read();p=read();_1=read();
k=min(k,n);
reg int i,K,tot=0;
for(i=1;i<=n;++i)
{
a[++tot]=read();
if(a[tot]<=_1) --tot;
}
n=tot;if(n==0)
{
ans=Decimal(_1);
std::cout<<ans.to_string(p+3)<<std::endl;
return 0;
}
std::sort(a+1,a+n+1);
f[0][0]=_1;int lim=min(14,k);
for(i=1;i<=n;++i) a[i]+=a[i-1],f[0][i]=_1;
for(K=1;K<=lim;++K)
{
f[K][0]=_1;que.init();
for(i=1;i<=n;++i)
que.get(K,i),que.ins(K-1,i);
}
ans=Decimal(_1);cal(n-(k-lim),lim);
for(i=n-(k-lim)+1;i<=n;++i) ans=(ans+a[i]-a[i-1])/2;
std::cout<<ans.to_string(p+2)<<std::endl;
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
致虚极,守静笃,万物并作,吾以观其复