【模板】杜教筛(Sum)
传送门
Description
给定一个正整数\(N(N\le2^{31}-1)\)
求
\[ans1=\sum_{i=1}^n \varphi(i) \]\[ans_2=\sum_{i=1}^n \mu(i) \]
Solution
总算是写了一个不会\(TLE\)的杜教筛,不想用\(map\),因此上了一个很丑的\(Hash\)……
Code
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define MN 1900000
int cnt,pr[MN];
bool mark[MN];
struct Node{int id;ll phi,mu;}MI[MN];
inline void init()
{
register int i,j;
for(i=1;i<MN;++i) MI[i].id=i;
MI[1].phi=MI[1].mu=1;
for(i=2;i<MN;++i)
{
if(!mark[i]){pr[++cnt]=i;MI[i].phi=i-1;MI[i].mu=-1;}
for(j=1;j<=cnt&&i*pr[j]<MN;++j)
{
#define now i*pr[j]
mark[now]=true;
if(i%pr[j]==0){MI[now].mu=0;MI[now].phi=MI[i].phi*pr[j];break;}
else MI[now].mu=-MI[i].mu,MI[now].phi=MI[i].phi*(pr[j]-1);
#undef now
}
}
for(i=1;i<MN;++i) MI[i].phi+=MI[i-1].phi,MI[i].mu+=MI[i-1].mu;
}
class Hash
{
#define mod 23333
private:
std::vector<Node> a[mod];
int ha,i;
Node em;
public:
Hash(){em=(Node){0,0ll,0ll};};
inline void insert(int id,ll phi,ll mu){a[id%mod].push_back((Node){id,phi,mu});}
inline Node find(int id)
{
ha=id%mod;
for(i=a[ha].size()-1;~i;--i) if(a[ha][i].id==id) return a[ha][i];
return em;
}
}HA;
inline Node calc(int n)
{
if(n<MN) return MI[n];
register Node ans,tmp;
if((ans=HA.find(n)).id) return ans;
ll ret1=1ll,ret2=1ll*n*(n+1)/2ll;
for(register ll i=2,j;i<=n;i=j+1)
j=n/(n/i),tmp=calc(n/i),ret1-=(j-i+1)*tmp.mu,ret2-=(j-i+1)*tmp.phi;
ans=(Node){n,ret2,ret1};HA.insert(n,ret2,ret1);
return ans;
}
int main()
{
init();
register int T,n;
T=read();
register Node ans;
while(T--)
{
n=read();
ans=calc(n);
printf("%lld %lld\n",ans.phi,ans.mu);
}
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
致虚极,守静笃,万物并作,吾以观其复