[atARC121F]Logical Operations on Tree

(特判$n=1$的情况)

当确定权值和操作后,如何判定是否合法——

考虑一个度为1的节点,对其权值即其对应边的边操作分类讨论:

$1\or$,显然只需要最后选择这条边即可,一定合法

$1\and$或$0\or$,显然这条边没有意义,不妨直接选择

$0\and$,将最终的结果变为0,显然不如初始的值为0(结果仍为0也不劣),因此也不妨直接选择

综上,有以下策略:若存在$1\or$的情况一定合法,否则不断选择某一条度为1的点对应的边即可

然后,进行树形dp即可,令$f_{k,0/1/2}$表示以$k$为根的子树中最终$k$的权值为0/1且未出现$1\or$的情况和出现$1\or$的方案数(仅考虑子树内部),转移即
$$
\begin{cases}f_{k,0}=f_{k,0}(2f_{son,0}+f_{son,1})+f_{k,1}f_{son,0}\\f_{k,1}=f_{k,1}(f_{son,0}+f_{son,1})\\f_{k,2}=(f_{k,0}+f_{k,1})(f_{son,1}+2f_{son,2})+2f_{k,2}(f_{son,0}+f_{son,1}+f_{son,2})\end{cases}
$$
初始状态为$f_{k,0}=f_{k,1}=1$,最终答案为$f_{rt,1}+f_{rt,2}$

时间复杂度为$o(n)$,可以通过

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define N 100005
 4 #define mod 998244353
 5 #define ll long long
 6 struct Edge{
 7     int nex,to;
 8 }edge[N<<1];
 9 int E,n,x,y,ans,head[N];
10 ll g[3],f[N][3];
11 void add(int x,int y){
12     edge[E].nex=head[x];
13     edge[E].to=y;
14     head[x]=E++;
15 }
16 void dfs(int k,int fa){
17     f[k][0]=f[k][1]=1;
18     for(int i=head[k];i!=-1;i=edge[i].nex){
19         int v=edge[i].to;
20         if (v!=fa){
21             dfs(v,k);
22             memcpy(g,f[k],sizeof(g));
23             f[k][0]=(g[0]*(2*f[v][0]+f[v][1])+g[1]*f[v][0])%mod;
24             f[k][1]=g[1]*(f[v][0]+f[v][1])%mod;
25             f[k][2]=((g[0]+g[1])*(f[v][1]+2*f[v][2])%mod+2*g[2]*(f[v][0]+f[v][1]+f[v][2]))%mod;
26         }
27     }
28 }
29 int main(){
30     scanf("%d",&n);
31     memset(head,-1,sizeof(head));
32     for(int i=2;i<=n;i++){
33         scanf("%d%d",&x,&y);
34         add(x,y);
35         add(y,x);
36     }
37     dfs(1,0);
38     printf("%d",(f[1][1]+f[1][2])%mod);
39 }
View Code

 

posted @ 2021-07-06 09:04  PYWBKTDA  阅读(88)  评论(0编辑  收藏  举报