[atARC117F]Gateau
假设序列$b_{i}$为最终第$i$片上的草莓数,即需要满足:$\forall 0\le i<2n,a_{i}\le \sum_{j=0}^{n-1}b_{(i+j)mod\ 2n}$
要求最小化$\sum_{i=0}^{2n-1}b_{i}$,显然增大$b_{i}$一定仍满足条件,即具备单调性,二分并判断其是否可以为$X$
为了避免取模,将条件分为$0\le i<n$以及$n\le i<2n$两部分,分别可以写作:
1.$\forall 0\le i<n,a_{i}\le \sum_{j=0}^{n-1}b_{i+j}$
2.$\forall n\le i<2n,a_{i}\le \sum_{j=i}^{2n-1}b_{j}+\sum_{j=0}^{i-n-1}b_{j}$,考虑后者中不被计算的是一个连续区间,可以用$X$减去这一段,即$X-\sum_{j=i-n-1}^{i-1}b_{j}$,移项后即$\sum_{j=i-n}^{i-1}b_{j}\le X-a_{i}$
两部分分别限制了上下限,即条件也可以写作:$\forall 0\le i<n,a_{i}\le \sum_{j=0}^{n-1}b_{i+j}\le X-a_{i+n}$
对其求前缀和,令$S_{i}=\sum_{j=0}^{i-1}b_{j}$,即要求$a_{i}\le S_{i+n}-S_{i}\le X-a_{i+n}$
另一方面,根据$b_{i}\ge 0$,还要求$S_{i}\le S_{i+1}$(特别的,要求$S_{0}=0$以及$S_{2n-1}\le X$)
同时,上面这两个条件也是充分条件,问题即判断是否存在满足上述条件的$S_{i}$
将之变形,最终所有条件都可以写作$S_{i}+x\le S_{j}$,即差分约束的形式
更具体的来说,建有向边$(i,j,x)$并从0开始求最长路,令$d_{i}$为到$i$的最长路,即满足此条件
另外,有正环或最终$d_{2n-1}>X$即无解(这里最长路才是$S_{2n-1}$的最小值)
由于有正权边(求最长路),只能使用spfa,以及最外层的二分,复杂度为$o(n^{2}\log A)$,且会被卡
事实上,由于这张图的特殊性,有如下做法:
如果将$(n-1,n,0)$这条边删去,将整张图看作上下两行,分别为$[0,n)$和$[n,2n)$,图的结构即比较简单,仅包含上下两行对应点之的有环,以及两行向后的边
此时将两个对应点的最长路一起算,即没有了后效性,可以$o(n)$求出
(特别的,若$a_{i}+a_{i+n}>X$即存在两个对应点之间的正环,即无解)
加入这条边后,在没有正环的情况下,先忽略这条边求出最长路,再加入这条边后用$S_{n-1}$更新$S_{n}$并重复一次求最长路(仍然忽略这条边),若$S_{n-1}$发生变化必然存在正环,否则即求出了最长路
(另外更新$S_{n}$后,还需要判断是否满足$S_{n}\le X-a_{n}$)
这一做法复杂度$o(n\log A)$,可以通过
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define N 300005 4 #define ll long long 5 int E,n,a[N]; 6 ll d[N]; 7 void calc(ll k){ 8 for(int i=1;i<n;i++){ 9 d[i]=max(d[i-1],d[i+n-1]+a[i+n]-k); 10 d[i+n]=max(d[i+n-1],d[i-1]+a[i]); 11 } 12 } 13 bool check(ll k){ 14 for(int i=0;i<n;i++) 15 if (a[i]+a[i+n]>k)return 0; 16 d[n]=a[0]; 17 calc(k); 18 ll lst=d[n-1]; 19 d[n]=max(d[n],d[n-1]); 20 if (d[n]>k-a[n])return 0; 21 calc(k); 22 if (lst!=d[n-1])return 0; 23 return d[2*n-1]<=k; 24 } 25 int main(){ 26 scanf("%d",&n); 27 for(int i=0;i<2*n;i++)scanf("%d",&a[i]); 28 ll l=0,r=1e15; 29 while (l<r){ 30 ll mid=(l+r>>1); 31 if (check(mid))r=mid; 32 else l=mid+1; 33 } 34 printf("%lld",l); 35 }