[HAOI2011] Problem b
前言
update 2022.1.22 血压升高,之前写的题解竟然是错的!
板题一号
题目
题意:
求 \(\sum_{i=a}^b\sum_{j=c}^d[\gcd(i,j)=k]\)
讲解
大方向为容斥
令 \(S(n,m)=\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\)
则原式可化为 \(S(b,d)-S(a-1,d)-S(b,c-1)+S(a-1,c-1)\)
令 \(f(k)=\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\),即 \(S(n,m)\)
\(F(k)=\sum_{k|d}f(d)=\lfloor\dfrac{n}{k}\rfloor\lfloor\dfrac{m}{k}\rfloor\)
\(f(k)=\sum_{k|d}\mu(\dfrac{d}{k})F(d)=\sum_{k|d}\mu(\dfrac{d}{k})\lfloor\dfrac{n}{d}\rfloor\lfloor\dfrac{m}{d}\rfloor\)
我们将 \(\dfrac{d}{k}\) 换元,得到:
\(f(k)=\sum_{i=1}^{\frac{\min(n,m)}{k}}\mu(i)\lfloor\dfrac{n}{ik}\rfloor\lfloor\dfrac{m}{ik}\rfloor\)
然后数论分块即可
代码
//12252024832524
#include <cstdio>
#include <cstring>
#include <algorithm>
#define TT template<typename T>
using namespace std;
typedef long long LL;
const int MAXN = 50005;
int n,k;
LL Read()
{
LL x = 0,f = 1;char c = getchar();
while(c > '9' || c < '0'){if(c == '-')f = -1;c = getchar();}
while(c >= '0' && c <= '9'){x = (x*10) + (c^48);c = getchar();}
return x * f;
}
TT void Put1(T x)
{
if(x > 9) Put1(x/10);
putchar(x%10^48);
}
TT void Put(T x,char c = -1)
{
if(x < 0) putchar('-'),x = -x;
Put1(x); if(c >= 0) putchar(c);
}
TT T Max(T x,T y){return x > y ? x : y;}
TT T Min(T x,T y){return x < y ? x : y;}
TT T Abs(T x){return x < 0 ? -x : x;}
int prime[MAXN],pn,mu[MAXN],pre[MAXN];
bool vis[MAXN];
void sieve(int x)
{
pre[1] = mu[1] = 1;
for(int i = 2;i <= x;++ i)
{
if(!vis[i]) mu[i] = -1,prime[++pn] = i;
for(int j = 1;j <= pn && i * prime[j] <= x;++ j)
{
vis[i*prime[j]] = 1;
if(i % prime[j] == 0) break;
mu[i*prime[j]] = -mu[i];
}
pre[i] = pre[i-1] + mu[i];
}
}
int solve(int n,int m)
{
if(n > m) swap(n,m);
if(n <= 0) return 0;
int ret = 0; n /= k; m /= k;
for(int l = 1,r;l <= n;l = r+1)
{
r = Min(n/(n/l),m/(m/l));
ret += (n / l) * (m / l) * (pre[r] - pre[l-1]);
}
return ret;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
sieve(MAXN-5);
for(int T = Read(); T ;-- T)
{
int a = Read(),b = Read(),c = Read(),d = Read(); k = Read();
Put(solve(b,d)-solve(a-1,d)-solve(c-1,b)+solve(a-1,c-1),'\n');
}
return 0;
}