ZooKeeper笔记

Zookeeper入门

概述

Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。

Zookeeper从设计模式角度来理解,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生了变化,Zookeeper就负责通知已经在Zookeeper上注册的那些观察者做出相应的反应.

Zookeeper = 文件系统 + 通知机制

ZooKeeper工作机制

image

特点

image

  1. ZooKeeper:一个领导者(Leader),多个追随者(Follower)组成的集群
  2. 集群中只要有半数以上节点存活,ZooKeeper集群就能正常服务
  3. 全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
  4. 顺序一致性:更新请求顺序进行,来自同一个Client的更新请求按其发送顺序依次执行
  5. 数据更新原子性,一次数据更新要么成功,要么失败
  6. 实时性,在一定时间范围内,Client能读到最新数据
  7. 可靠性:一旦服务端成功应用了一个事务,则其引起的改变会一直保留,直到被另外一个事务所更改;
  8. 单一视图:所有客户端看到的服务端数据模型都是一致的

Zookeeper设计目标

Zookeeper 致力于为那些高吞吐的大型分布式系统提供一个高性能、高可用、且具有严格顺序访问控制能力的分布式协调服务。它具有以下四个目标:

目标一:简单的数据模型

Zookeeper 通过树形结构来存储数据,它由一系列被称为 ZNode 的数据节点组成,类似于常见的文件系统。不过和常见的文件系统不同,Zookeeper 将数据全量存储在内存中,以此来实现高吞吐,减少访问延迟。

image

目标二:构建集群

可以由一组 Zookeeper 服务构成 Zookeeper 集群,集群中每台机器都会单独在内存中维护自身的状态,并且每台机器之间都保持着通讯,只要集群中有半数机器能够正常工作,那么整个集群就可以正常提供服务。

目标三:顺序访问

对于来自客户端的每个更新请求,Zookeeper 都会分配一个全局唯一的递增 ID,这个 ID 反映了所有事务请求的先后顺序。

目标四:高性能高可用

ZooKeeper 将数据存全量储在内存中以保持高性能,并通过服务集群来实现高可用,由于 Zookeeper 的所有更新和删除都是基于事务的,所以其在读多写少的应用场景中有着很高的性能表现。

数据结构

ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识

image

应用场景

提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

统一命名服务

image

统一配置管理

image

统一集群管理

image

服务器节点动态上下线

软负载均衡

image

客户端命令行操作

命令基本语法 功能描述
help 显示所有操作命令
ls path 使用 ls 命令来查看当前znode的子节点 -w 监听子节点变化 -s 附加次级信息
create 普通创建 -s 含有序列 -e 临时(重启或者超时消失)
get path 获得节点的值 -w 监听节点内容变化 -s 附加次级信息
set 设置节点的具体值
stat 查看节点状态
delete 删除节点
deleteall 递归删除节点

Zookeeper内部原理

集群角色

Zookeeper 集群中的机器分为以下三种角色:

  • Leader :为客户端提供读写服务,并维护集群状态,它是由集群选举所产生的;
  • Follower :为客户端提供读写服务,并定期向 Leader 汇报自己的节点状态。同时也参与写操作“过半写成功”的策略和 Leader 的选举;
  • Observer :为客户端提供读写服务,并定期向 Leader 汇报自己的节点状态,但不参与写操作“过半写成功”的策略和 Leader 的选举,因此 Observer 可以在不影响写性能的情况下提升集群的读性能。

会话

Zookeeper 客户端通过 TCP 长连接连接到服务集群,会话 (Session) 从第一次连接开始就已经建立,之后通过心跳检测机制来保持有效的会话状态。通过这个连接,客户端可以发送请求并接收响应,同时也可以接收到 Watch 事件的通知。

关于会话中另外一个核心的概念是 sessionTimeOut(会话超时时间),当由于网络故障或者客户端主动断开等原因,导致连接断开,此时只要在会话超时时间之内重新建立连接,则之前创建的会话依然有效。

节点类型

Zookeeper 数据模型是由一系列基本数据单元 Znode(数据节点) 组成的节点树,其中根节点为 /。每个节点上都会保存自己的数据和节点信息。Zookeeper 中节点可以分为两大类:

  • 持久节点 :节点一旦创建,除非被主动删除,否则一直存在;
  • 临时节点 :一旦创建该节点的客户端会话失效,则所有该客户端创建的临时节点都会被删除。

临时节点和持久节点都可以添加一个特殊的属性:SEQUENTIAL,代表该节点是否具有递增属性。如果指定该属性,那么在这个节点创建时,Zookeeper 会自动在其节点名称后面追加一个由父节点维护的递增数字。

image

节点信息

状态属性 说明
czxid 数据节点创建时的事务 ID
ctime 数据节点创建时的时间
mzxid 数据节点最后一次更新时的事务 ID
mtime 数据节点最后一次更新时的时间
pzxid 数据节点的子节点最后一次被修改时的事务 ID
cversion 子节点的更改次数
version 节点数据的更改次数
aversion 节点的 ACL 的更改次数
ephemeralOwner 如果节点是临时节点,则表示创建该节点的会话的 SessionID;如果节点是持久节点,则该属性值为 0
dataLength 数据内容的长度
numChildren 数据节点当前的子节点个数

监听器原理(面试重点)

  1. 监听原理详解

    1. 首先要有一个main()线程
    2. 在main线程中创建ZooKeeper客户端,这时就会创建两个线程,一个负责网络连接通信(connet),一个负责监听(listener)
    3. 通过connet线程将注册的监听事件发送给ZooKeeper
    4. 在ZooKeeper的注册监听器列表中将注册的监听事件添加到列表中
    5. ZooKeeper监听到有数据或路径变化,就会将这个消息发送到liastener线程
    6. listener线程内部调用了process()方法
  2. 常见的监听

    1. 监听节点数据的变化

      get path [watch]

    2. 监听子节点递增的变化

      ls path [watch]

选举机制(面试重点)

1)半数机制:集群中半数以上机器存活,集群可用。所以Zookeeper适合安装奇数台服务器。

(2)Zookeeper虽然在配置文件中并没有指定Master和Slave。但是,Zookeeper工作时,是有一个节点为Leader,其他则为Follower,Leader是通过内部的选举机制临时产生的。

(3)以一个简单的例子来说明整个选举的过程。

假设有五台服务器组成的Zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的。假设这些服务器依序启动,来看看会发生什么。

image

(1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;

(2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的ID比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING

(3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;

(4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;

(5)服务器5启动,同4一样当小弟。

ACL

Zookeeper 采用 ACL(Access Control Lists) 策略来进行权限控制,类似于 UNIX 文件系统的权限控制。它定义了如下五种权限:

  • CREATE:允许创建子节点;
  • READ:允许从节点获取数据并列出其子节点;
  • WRITE:允许为节点设置数据;
  • DELETE:允许删除子节点;
  • ADMIN:允许为节点设置权限。

写数据流程

image

ZAB协议

ZAB协议与数据一致性

ZAB 协议是 Zookeeper 专门设计的一种支持崩溃恢复的原子广播协议。通过该协议,Zookeepe 基于主从模式的系统架构来保持集群中各个副本之间数据的一致性。具体如下:

Zookeeper 使用一个单一的主进程来接收并处理客户端的所有事务请求,并采用原子广播协议将数据状态的变更以事务 Proposal 的形式广播到所有的副本进程上去。如下图:

image

具体流程如下:

所有的事务请求必须由唯一的 Leader 服务来处理,Leader 服务将事务请求转换为事务 Proposal,并将该 Proposal 分发给集群中所有的 Follower 服务。如果有半数的 Follower 服务进行了正确的反馈,那么 Leader 就会再次向所有的 Follower 发出 Commit 消息,要求将前一个 Proposal 进行提交。

ZAB协议的内容

ZAB 协议包括两种基本的模式,分别是崩溃恢复和消息广播:

1. 崩溃恢复

当整个服务框架在启动过程中,或者当 Leader 服务器出现异常时,ZAB 协议就会进入恢复模式,通过过半选举机制产生新的 Leader,之后其他机器将从新的 Leader 上同步状态,当有过半机器完成状态同步后,就退出恢复模式,进入消息广播模式。

2. 消息广播

ZAB 协议的消息广播过程使用的是原子广播协议。在整个消息的广播过程中,Leader 服务器会每个事物请求生成对应的 Proposal,并为其分配一个全局唯一的递增的事务 ID(ZXID),之后再对其进行广播。具体过程如下:

Leader 服务会为每一个 Follower 服务器分配一个单独的队列,然后将事务 Proposal 依次放入队列中,并根据 FIFO(先进先出) 的策略进行消息发送。Follower 服务在接收到 Proposal 后,会将其以事务日志的形式写入本地磁盘中,并在写入成功后反馈给 Leader 一个 Ack 响应。当 Leader 接收到超过半数 Follower 的 Ack 响应后,就会广播一个 Commit 消息给所有的 Follower 以通知其进行事务提交,之后 Leader 自身也会完成对事务的提交。而每一个 Follower 则在接收到 Commit 消息后,完成事务的提交。

image

Zookeeper的典型应用场景

数据的发布/订阅

数据的发布/订阅系统,通常也用作配置中心。在分布式系统中,你可能有成千上万个服务节点,如果想要对所有服务的某项配置进行更改,由于数据节点过多,你不可逐台进行修改,而应该在设计时采用统一的配置中心。之后发布者只需要将新的配置发送到配置中心,所有服务节点即可自动下载并进行更新,从而实现配置的集中管理和动态更新。

Zookeeper 通过 Watcher 机制可以实现数据的发布和订阅。分布式系统的所有的服务节点可以对某个 ZNode 注册监听,之后只需要将新的配置写入该 ZNode,所有服务节点都会收到该事件。

命名服务

在分布式系统中,通常需要一个全局唯一的名字,如生成全局唯一的订单号等,Zookeeper 可以通过顺序节点的特性来生成全局唯一 ID,从而可以对分布式系统提供命名服务。

Master选举

分布式系统一个重要的模式就是主从模式 (Master/Salves),Zookeeper 可以用于该模式下的 Matser 选举。可以让所有服务节点去竞争性地创建同一个 ZNode,由于 Zookeeper 不能有路径相同的 ZNode,必然只有一个服务节点能够创建成功,这样该服务节点就可以成为 Master 节点。

分布式锁

可以通过 Zookeeper 的临时节点和 Watcher 机制来实现分布式锁,这里以排它锁为例进行说明:

分布式系统的所有服务节点可以竞争性地去创建同一个临时 ZNode,由于 Zookeeper 不能有路径相同的 ZNode,必然只有一个服务节点能够创建成功,此时可以认为该节点获得了锁。其他没有获得锁的服务节点通过在该 ZNode 上注册监听,从而当锁释放时再去竞争获得锁。锁的释放情况有以下两种:

  • 当正常执行完业务逻辑后,客户端主动将临时 ZNode 删除,此时锁被释放;
  • 当获得锁的客户端发生宕机时,临时 ZNode 会被自动删除,此时认为锁已经释放。

当锁被释放后,其他服务节点则再次去竞争性地进行创建,但每次都只有一个服务节点能够获取到锁,这就是排他锁。

集群管理

Zookeeper 还能解决大多数分布式系统中的问题:

  • 如可以通过创建临时节点来建立心跳检测机制。如果分布式系统的某个服务节点宕机了,则其持有的会话会超时,此时该临时节点会被删除,相应的监听事件就会被触发。
  • 分布式系统的每个服务节点还可以将自己的节点状态写入临时节点,从而完成状态报告或节点工作进度汇报。
  • 通过数据的订阅和发布功能,Zookeeper 还能对分布式系统进行模块的解耦和任务的调度。
  • 通过监听机制,还能对分布式系统的服务节点进行动态上下线,从而实现服务的动态扩容。
posted @ 2022-07-26 16:52  POCOPOCOPOCO  阅读(42)  评论(0编辑  收藏  举报