poj 1845 POJ 1845 Sumdiv 数学模板

筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^n
POJ 1845 Sumdiv
求A^B的所有约数之和%9901

*/
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
#define MOD 9901
const int MAXN=10000;
int prime[MAXN+1];
void Prime()//筛选法
{
memset(prime,0,sizeof(prime));
for(int i=2;i<=MAXN;i++)
{
if(!prime[i])
prime[++prime[0]]=i;
for(int j=1;j<=prime[0]&&prime[j]<=MAXN/i;j++)
{
prime[prime[j]*i]=1;
if(i%prime[j]==0)
break;
}
}
}
long long factor[100][2];//factor[i][0]存的是因子,factor[i][1]存的是次数
int cnt;//记录不同因子的个数
int getFactors(long long x)
{
cnt=0;
long long tmp=x;
for(int i=1;prime[i]<=tmp/prime[i];i++)
{
factor[cnt][1]=0;
if(tmp%prime[i]==0)
{
factor[cnt][0]=prime[i];
while(tmp%prime[i]==0)
{
factor[cnt][1]++;
tmp/=prime[i];
}
cnt++;
}
}
if(tmp!=1)
{
factor[cnt][0]=tmp;
factor[cnt++][1]=1;
}
return cnt;
}
long long pow_m(long long a,long long n)//快速模幂运算
{
long long res=1;
long long tmp=a%MOD;
while(n)
{
if(n&1){res*=tmp;res%=MOD;}
n>>=1;
tmp*=tmp;
tmp%=MOD;
}
return res;
}
long long sum(long long p,long long n)//计算1+p+p^2+````+p^n
{
if(p==0)
return 0;
if(n==0)
return 1;
if(n&1)//奇数
{
return ((1+pow_m(p,n/2+1))%MOD*sum(p,n/2)%MOD)%MOD;
}
else return ((1+pow_m(p,n/2+1))%MOD*sum(p,n/2-1)+pow_m(p,n/2)%MOD)%MOD;

}
int main()
{
int A,B;
Prime();
while(scanf("%d%d",&A,&B)!=EOF)
{
getFactors(A);
long long ans=1;
for(int i=0;i<cnt;i++)
{
ans*=(sum(factor[i][0],B*factor[i][1])%MOD);
ans%=MOD;
}
printf("%I64d\n",ans);
}
return 0;
}

posted @ 2015-01-27 10:12  PJQOOO  阅读(276)  评论(0编辑  收藏  举报