2024 University of Shanghai for Science and Technology(USST) Freshman Challenge Contest

A. 我是组题人

#include <bits/stdc++.h>

using namespace std;

int main() {
    int n;
    cin >> n;
    vector<int> a(n);
    for (auto &i: a) cin >> i;
    vector<int> p(n);
    iota(p.begin(), p.end(), 0);
    ranges::sort(p, [&](const int x, const int y) -> bool {
        if (a[x] != a[y]) return a[x] < a[y];
        return x < y;
    });
    for (auto i: p)
        cout << i + 1 << " ";
}

C. 小学题

\[\frac{m ^ 2}{2} + \frac{( n + m) ( n - m)}{ 2} = \frac{n ^ 2}{2} \]

发现阴影部分的面积和\(m\)无关。

#include <bits/stdc++.h>

using namespace std;

using i64 = long long;

void solve() {
    i64 n, l, r;
    cin >> n >> l >> r;
    cout << l << "\n";
    return;
}

int main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int T;
    cin >> T;
    while (T--)
        solve();
}

E. 昨日方舟

模拟题

#include <bits/stdc++.h>

using namespace std;

using i32 = int32_t;
using i64 = long long;

#define int i64

using vi = vector<int>;
using pii = pair<int, int>;

const int inf = INT_MAX;

i32 main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int n, m, k;
    cin >> n >> m >> k;
    vector g(n, vector<char>(m, 'O'));

    for (auto &gi: g)
        for (auto &gij: gi) {
            int x;
            cin >> x;
            if (x == 0) gij = 'X';
        }

    auto dx = [](char x) {
        if (x == 'u') return -1;
        if (x == 'd') return 1;
        return 0;
    };
    auto dy = [](char y) {
        if (y == 'l') return -1;
        if (y == 'r') return 1;
        return 0;
    };

    vector lst(n, vector<int>(m, inf));

    for (; k; k--) {
        int x, y;
        char t;
        cin >> x >> y >> t, x--, y--;
        if (g[x][y] != 'O') continue;
        int fx = x + dx(t), fy = y + dy(t);
        if (fx >= 0 and fy >= 0 and fx < n and fy < m and 'a' <= g[fx][fy] and g[fx][fy] <= 'z') {
            g[fx][fy] += 'A' - 'a';
        } else {
            g[x][y] = t, lst[x][y] = k;
            int ret = inf;
            for (int gx, gy; auto i: "udlr") {
                gx = x - dx(i), gy = y - dy(i);
                if (gx < 0 or gy < 0 or gx >= n or gy >= m)continue;
                if (g[gx][gy] != i) continue;
                ret = min(ret, lst[gx][gy]);
            }
            if (ret == inf) continue;
            g[x][y] += 'A' - 'a';
            for (int gx, gy; auto i: "udlr") {
                gx = x - dx(i), gy = y - dy(i);
                if (gx < 0 or gy < 0 or gx >= n or gy >= m)continue;
                if (lst[gx][gy] != ret) continue;
                g[gx][gy] = 'O';
                break;
            }
        }
    }
    for (auto &gi: g) {
        for (auto &gij: gi) cout << gij;
        cout << "\n";
    }
    return 0;
}

G. 石子游戏

打表找规律,发现先手必胜的情况是连续的若干段。

第一段的长度是\(t_1 = n\),之后每一段长度是$t_i = 2t_i $

第一段的与 0 的间隔是\(d_1 = 2(n + 1)\),之后每一段与前一段的间隔都是\(d_i = 2 d_{i-1}\)

第一段的结尾在\(p_1 = d_1 - 2\),之后每一段的结尾在\(p_{i} = p_{i - 1} + d_{i-1}\)

#include <bits/stdc++.h>

using namespace std;

using i32 = int32_t;
using i64 = long long;

#define int i64

using vi = vector<int>;
using pii = pair<int, int>;

map<pii, int> g;

int sg(int n, int k) {
    if (g.count(pair(n, k))) return g[pair(n, k)];
    for (int i = 1; i <= n; i++) {
        if (n + i > k) break;
        if (sg(n + i, k) == 0) return g[pair(n, k)] = 1;
    }
    return g[pair(n, k)] = 0;
}

void test() {
    for (int i = 3; i <= 80; i++) {
        cout << i << " " << sg(3, i) << "\n";
    }
    exit(0);
}

void solve() {
    int n, k;
    cin >> n >> k;
    int d = (n + 1) * 2, p = d - 2, t = n;
    while (p < k) {
        p += d;
        d *= 2, t *= 2;
    }
    if (k > p - t) cout << "Alice\n";
    else cout << "Bob\n";
}


i32 main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int T;
    cin >> T;
    while (T--)
        solve();
    return 0;
}

I. 纠缠之圆

主要考虑圆心距离与半径之间的关系。

首先如果重合有无限条切线。

如果圆心距大于半径之和有 4 条

如果圆心距等于半径之和有 3 条

如果圆心距大于半径之差有 2 条

如果圆心距等于半径之差有 1 条

剩下情况有0 条

逐一判断就好

#include <bits/stdc++.h>

using namespace std;

using i64 = long long;

void solve() {
    i64 o1x, o2x, o1y, o2y, o1r, o2r;
    cin >> o1x >> o1y >> o1r;
    cin >> o2x >> o2y >> o2r;

    if (o1x == o2x and o1y == o2y and o1r == o2r) {
        cout << "-1\n";
        return;
    }

    i64 d = (o1x - o2x) * (o1x - o2x) + (o1y - o2y) * (o1y - o2y);
    i64 r1 = (o1r + o2r) * (o1r + o2r);
    i64 r2 = (o1r - o2r) * (o1r - o2r);

    if (d > r1) {
        cout << 4 << "\n";
    } else if (d == r1) {
        cout << 3 << "\n";
    } else if (d > r2) {
        cout << 2 << "\n";
    } else if (d == r2) {
        cout << 1 << "\n";
    } else {
        cout << 0 << "\n";
    }
}

int main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int T;
    cin >> T;
    while (T--)
        solve();
}

J. 上学

题面的意思,可以抽象为,选三个点,且三个点不在一条链上方案数,这里链指的是从根到叶子的一条路径。

我们可以用总方案数\(C_n^3\)减去三个点在一条链方案数。

我们可以枚举三个点中深度最深的点,然后从这个点到根路径上的点有\(d\)个,那么剩下两个点的选择方案就是\(\frac{d(d-1)}{2}\)

#include <bits/stdc++.h>

using namespace std;

using i32 = int32_t;
using i64 = long long;

#define int i64

using vi = vector<int>;
using pii = pair<int, int>;


i32 main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int n;
    cin >> n;
    vector<vi> e(n + 1);
    for (int i = 1, x, y; i < n; i++) {
        cin >> x >> y;
        e[x].push_back(y);
        e[y].push_back(x);
    }
    vi dis(n + 1);
    auto dfs = [&](auto &&self, int x, int fa) -> void {
        for (auto y: e[x]) {
            if (y == fa) continue;
            dis[y] = dis[x] + 1;
            self(self, y, x);
        }
    };
    dfs(dfs, 1, -1);

    int res = n * (n - 1) * (n - 2) / 6;
    for (int i = 1; i <= n; i++)
        res -= dis[i] * (dis[i] - 1) / 2;
    cout << res;
    return 0;
}

K. 环形数组(easy)

维护当前点的坐标和移动方向,暴力的把图填出来就好了。

#include <bits/stdc++.h>

using namespace std;

using i64 = long long;

const vector<int> dx = {0, 1, 0, -1}, dy = {1, 0, -1, 0};

int main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int n, m;
    cin >> n >> m;
    vector a(n, vector<int>(m));
    int x = 0, y = 0, d = 0;
    for (int i = 1, N = n * m, fx, fy; i <= N; i++) {
        a[x][y] = i;
        fx = x + dx[d], fy = y + dy[d];
        if (fx < 0 or fy < 0 or fx >= n or fy >= m or a[fx][fy] != 0) {
            d = (d + 1) % 4;
            fx = x + dx[d], fy = y + dy[d];
        }
        x = fx, y = fy;
    }
    for (auto ai: a) {
        for (auto aij: ai)
            cout << aij << " ";
        cout << "\n";
    }
    return 0;
}

L. 环形数组(hard)

我们一圈一圈的考虑,第\(i\)的总个数是\(2n + 2m + 4 - 8i\),前\(i\)圈的总个数是\((2n+2m-4i)i\)。这样我们可以二分出应该在第几圈然后暴力判断最后一圈就好了。

#include <bits/stdc++.h>

using namespace std;

using i32 = int32_t;
using i64 = long long;

#define int i64

using vi = vector<int>;
using pii = pair<int, int>;

void solve() {
    int n, m, t;
    cin >> n >> m >> t, t--;
    int l = 1, r = min(n, m), i = -1;
    while (l <= r) {
        int mid = (l + r) / 2;
        if ((2 * n + 2 * m - 4 * mid) * mid >= t)
            i = mid, r = mid - 1;
        else l = mid + 1;
    }
    int x = i, y = i;
    i--;
    t -= (2 * n + 2 * m - 4 * i) * i, n -= 2 * i + 1, m -= 2 * i + 1;

    if (t > 0) y += min(m, t), t -= min(m, t);
    if (t > 0) x += min(n, t), t -= min(n, t);
    if (t > 0) y -= min(m, t), t -= min(m, t);
    if (t > 0) x -= min(n, t), t -= min(n, t);

    cout << x << " " << y << "\n";
    return;
}

i32 main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int T;
    cin >> T;
    while (T--) solve();
    return 0;
}

M. 蔡光数组

#include <bits/stdc++.h>

using namespace std;

using i64 = long long;


int main() {
    ios::sync_with_stdio(false), cin.tie(nullptr);
    int a, b, c, d;
    cin >> a >> b >> c >> d;
    if (a != b and b == c and a != d and b != d) {
        cout << "Yes\n";
    } else {
        cout << "No\n";
    }
}
posted @ 2024-09-14 15:01  PHarr  阅读(11)  评论(0编辑  收藏  举报