Educational Codeforces Round 1
A. Tricky Sum
公式求出1 到 n的和,然后枚举二等整次幂。
#include <bits/stdc++.h>
using namespace std;
#define int long long
void solve(){
int n; cin >> n;
int sum = ( 1 + n ) * n / 2;
for( int i = 1 ; i <= n ; i <<= 1 )
sum -= i * 2;
cout << sum << "\n";
return ;
}
int32_t main(){
int t ;
cin >> t;
while( t -- )
solve();
}
B. Queries on a String
每移动\(r-l+1\)就相当没有移动,移动\(k\)次等价于移动\(k\mod (r-l+1)\)次
#include <bits/stdc++.h>
using namespace std;
#define int long long
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
string s, t;
cin >> s;
int m;
cin >> m;
for (int l, r, k; m; m--) {
cin >> l >> r >> k;
k %= (r - l + 1);
s = s.substr( 0 , l-1 )+s.substr( r - k , k )+s.substr( l-1 , r-l+1-k )+s.substr(r);
}
cout << s << "\n";
}
C. Nearest vectors
atan2(y,x)
计算的值是$\arctan \frac y x \(的值,注意的是,`atan`的值域是\)[0,\pi]\(,而`atan2`的值域是\)[-\pi,\pi]$
我们用atan2
计算出每个向量与\(x\)轴的夹角,然后排序,计算相邻的两个向量的角度即可
#include <bits/stdc++.h>
using namespace std;
#define double long double
typedef pair<double, int> pdi;
const double PI = acos(-1);
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int n;
cin >> n;
vector<pdi> a;
for (double i = 1, x, y; i <= n; i++) {
cin >> x >> y;
a.emplace_back(atan2(x, y), i);
}
sort(a.begin(), a.end());
auto tmp = [=](int x, int y) {
double t = a[x].first - a[y].first;
if (t < 0) t += PI * 2;
return t;
};
double ans = tmp(0, n - 1);
int l = a[0].second, r = a[n - 1].second;
for (int i = 1; i < n; i++) {
if (tmp(i, i - 1) < ans)
ans = tmp(i, i - 1), l = a[i].second, r = a[i - 1].second;
}
cout << l << " " << r;
return 0;
}
D. Igor In the Museum
.
表示空地,*
表示墙,空地相连可以组成联通块,每次给一点,问该点所属联通块与多少面墙所相邻。
注意*
表示的是四面墙,所以每一个方向过来的都要统计上。
这道题直接 bfs,然后给联通块打标记即可
#include<bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
array dx = {0, 0, 1, -1}, dy = {1, -1, 0, 0};
int n, m, k;
cin >> n >> m >> k;
vector<string> g(n);
for (auto &i: g) cin >> i;
vector<int> ans;
vector<vector<int>> vis(n, vector<int>(m, -1));
for (int r, c , tag; k; k--) {
cin >> r >> c, r--, c--;
if (vis[r][c] != -1) {
cout << ans[vis[r][c]] << "\n";
continue;
}
tag = ans.size() , ans.push_back(0) , vis[r][c] = tag;
queue<pair<int, int>> q;
q.emplace(r, c);
while (!q.empty()) {
auto [x, y] = q.front();
q.pop();
for (int fx, fy, i = 0; i < 4; i++) {
fx = x + dx[i], fy = y + dy[i];
if (fx < 0 || fy < 0 || fx >= n || fy >= m || vis[fx][fy] != -1 ) continue;
if( g[fx][fy] == '.' ) vis[fx][fy] = tag , q.emplace( fx , fy );
else ans[tag] ++;
}
}
cout << ans[tag] << "\n";
}
return 0;
}
E. Chocolate Bar
f[i][j][k]
表示i*j
的巧克力吃 k 块的最小花费。
因为是数据范围极小,直接枚举切的方向和位置,以及切好的两块分别吃几块即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 35, K = 55;
int f[N][N][K];
int read() {
int x = 0, f = 1, ch = getchar();
while ((ch < '0' || ch > '9') && ch != '-') ch = getchar();
if (ch == '-') f = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x * f;
}
int dfs(int n, int m, int k) {
if (f[n][m][k] != -1) return f[n][m][k];
if (n * m == k || k == 0) return f[n][m][k] = 0;
int ans = INT_MAX;
for (int a = 0, b = k; a <= k; a++ , b --) {
for (int i = 1, j = n - 1; i <= j; i++, j--) {
if (i * m < a || j * m < b) continue;
ans = min(ans, m * m + dfs(i, m, a) + dfs(j, m, b));
}
for (int i = 1, j = m - 1; i <= j; i++, j--) {
if (n * i < a || n * j < b) continue;
ans = min(ans, n * n + dfs(n, i, a) + dfs(n, j, b));
}
}
return f[n][m][k] = ans;
}
void solve() {
int n = read(), m = read(), k = read();
printf("%d\n", dfs(n, m, k));
return;
}
int main() {
fill(f[0][0], f[N - 1][N - 1] + K, -1);
for (int t = read(); t; t--)
solve();
return 0;
}