Codeforces Round 867 (Div. 3)

A. TubeTube Feed

#include <bits/stdc++.h>

using namespace std;


int main() {
    int q;
    cin >> q;
    while (q--) {
        int n, t, res = -1, id = -1;
        cin >> n >> t;
        vector<int> a(n + 1), b(n + 1);
        for (int i = 1; i <= n; i++) cin >> a[i];
        for (int i = 1; i <= n; i++) cin >> b[i];
        for (int i = 1; i <= n; i++) {
            if (a[i] <= t) {
                if (b[i] > res) res = b[i], id = i;
            }
            t--;
        }
        cout << id << "\n";
    }
}

B. Karina and Array

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read(){
    int x = 0 , f = 1 , ch = getchar();
    while( (ch < '0' || ch > '9') && ch != '-' ) ch = getchar();
    if( ch == '-' ) f = -1 , ch = getchar();
    while( ch >= '0' && ch <= '9' ) x = ( x << 3 ) + ( x << 1 ) + ch - '0' , ch = getchar();
    return x * f;
}

void solve(){
	int n = read();
	vector<int> a(n);
	for( auto & i : a ) i = read();
	sort( a.begin() ,a.end() );
	printf("%lld\n" , max( a[0] * a[1] , a[n-1] * a[n-2] ) );
}

int32_t main(){
	for( int t = read() ; t ; t -- )
		solve();
}

C. Bun Lover

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read(){
    int x = 0 , f = 1 , ch = getchar();
    while( (ch < '0' || ch > '9') && ch != '-' ) ch = getchar();
    if( ch == '-' ) f = -1 , ch = getchar();
    while( ch >= '0' && ch <= '9' ) x = ( x << 3 ) + ( x << 1 ) + ch - '0' , ch = getchar();
    return x * f;
}



int32_t main(){
	for( int t = read() , n ; t ; t -- ){
		n = read();
		printf("%lld\n" , (n+1)*(n+1) + 1 );
	}
}

D. Super-Permutation

打表找规律,发现\(b_i+1\)一定有\(n,1,n-1,2,n-2,3,\cdots\)这样的,根据\(b_i\)还原\(a_i\)即可

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read(){
    int x = 0 , f = 1 , ch = getchar();
    while( (ch < '0' || ch > '9') && ch != '-' ) ch = getchar();
    if( ch == '-' ) f = -1 , ch = getchar();
    while( ch >= '0' && ch <= '9' ) x = ( x << 3 ) + ( x << 1 ) + ch - '0' , ch = getchar();
    return x * f;
}



int32_t main(){
	for( int t = read() , n ; t ;  t -- ){
		n = read();
		if( n == 1 ){
			printf("1\n");
		}else if( n & 1 ){
			printf("-1\n");
		}else{
			int l = 1 , r = n;
			vector<int> a;
			for( int i = n / 2 ; i ; i -- , l ++ , r -- )
				a.push_back(l-1) , a.push_back(r-1);
			printf("%d" , n );
			for( int i = 1 , s = n , x  ; i < n ; i ++ ){
				x = ((a[i] - s) % n  + n) % n;
				s = ( s + x ) % n;
				printf(" %d" , x );
			}
			printf("\n");
		}
	}
}

E. Making Anti-Palindromes

如果有任意个字母出现次数超过一半,则一定无法构成。

统计每一个相同的字母对的数量。如果有一种字母的对数大于\(\frac n 2\),则一定不可以。

交换次数,要么是最多的字母对数,要么是重复的最多的对数。两者取较大值即可。

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read() {
    int x = 0, f = 1, ch = getchar();
    while ((ch < '0' || ch > '9') && ch != '-') ch = getchar();
    if (ch == '-') f = -1, ch = getchar();
    while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
    return x * f;
}

#define Count(arr) ( accumulate(arr.begin(),arr.end(),0ll) )
#define Max(arr) ( *max_element( arr.begin() , arr.end() ) )

int32_t main() {
    ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
    int t;
    cin >> t;
    for (int n, m; t; t--) {
        cin >> n;
        string s;
        cin >> s;
        if (n & 1) {
            cout << "-1\n";
            continue;
        }
        m = n / 2;
        vector<int> cnt(26), p(26);
        for (int i = 1; i <= m; i++) {
            if (s[i - 1] == s[n - i]) cnt[s[i - 1] - 'a']++;
            p[s[i - 1] - 'a']++, p[s[n - i] - 'a']++;
        }
        if (Max(p) > m) cout << "-1\n";
        else cout << max(Max(cnt), (Count(cnt) + 1) / 2) << "\n";
    }
}

F. Gardening Friends

首先找到直径的的两个端点\(p,q\),树上任意一个点距离最远的点一定包括\(p,q\)中至少一个。所以计算出任意点的\(p,q\)的距离,就可以\(O(1)\)的计算出根移动到每一个的点的收益。枚举根移动的位置取最大收益即可。

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read() {
    int x = 0, f = 1, ch = getchar();
    while ((ch < '0' || ch > '9') && ch != '-') ch = getchar();
    if (ch == '-') f = -1, ch = getchar();
    while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
    return x * f;
}

void solve() {
    int n = read(), k = read(), c = read();
    vector<vector<int>> e(n + 1);
    for (int i = n - 1, x, y; i; i--)
        x = read(), y = read(), e[x].push_back(y), e[y].push_back(x);
    auto bfs = [e, n](int x) {
        vector<int> d(n+1, -1);
        queue<int> q;
        q.push(x), d[x] = 0;
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (auto v: e[u]) {
                if (d[v] >= 0) continue;
                d[v] = d[u] + 1, q.push(v);
            }
        }
        return d;
    };

    auto d1 = bfs(1);
    int p = max_element(d1.begin(), d1.end()) - d1.begin();
    auto d2 = bfs(p);
    int q = max_element(d2.begin(), d2.end()) - d2.begin();
    auto d3 = bfs(q);
    int res = 0;
    for (int i = 1; i <= n; i++)
        res = max(res, max(d2[i], d3[i]) * k - d1[i] * c);
    printf("%lld\n", res);
    return;
}

int32_t main() {
    for (int t = read(); t; t--)
        solve();
	return 0;
}

G1. Magic Triples (Easy Version)

对于每一个组数,\((a_i,a_j,a_k)\)如果枚举 出\(a_i\),实际上就是\(a_i,a_ix,a_ix^2\),这里\(x\)的取值范围是\(10^3\),实际上远远不到这么多。

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read() {
    int x = 0, f = 1, ch = getchar();
    while ((ch < '0' || ch > '9') && ch != '-') ch = getchar();
    if (ch == '-') f = -1, ch = getchar();
    while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
    return x * f;
}

const int N = 1e6+5;
int cnt[N];

void solve() {
    int n = read() , res = 0;
    set<int> st;
    for( int i = n , x ; i ; i -- )
        x = read() , cnt[x] ++ , st.insert(x);
    for( auto i : st ){
        if( cnt[i] == 0 ) continue;
        if( cnt[i] >= 3 ) res += cnt[i] * (cnt[i]-1) * (cnt[i]-2);
        for( int j = 2 ; j * j * i <= *st.rbegin() ; j ++ ){
            res += cnt[i] * cnt[i*j] * cnt[i*j*j];
        }
    }
    for( auto i : st ) cnt[i] = 0;
    printf("%lld\n" , res);
    return;
}

int32_t main() {
    for (int t = read(); t; t--)
        solve();
	return 0;
}

G2. Magic Triples (Hard Version)

考虑改变枚举方式,枚举\(a_j\),则三元组就是\((\frac {a_j} b,a_j,a_jb)\),考虑到\(b\)一定是\(a_j\)的因子,所以我们可以算出\(a_j\)的所有因子,但是计算因子是\(\sqrt {a_j}\)的。

我们考虑按照值域分治,当\(a_j<S\)时枚举因子,复杂度\(O(\sqrt S)\),当\(a_j\ge S\)时,采取暴力枚举,复杂度\(O(\frac{10^9}{S})\),计算可知当\(S=10^6\)时,两种情况的复杂度都是\(O(10^3)\)

#include <bits/stdc++.h>

using namespace std;

#define int long long

int read() {
    int x = 0, f = 1, ch = getchar();
    while ((ch < '0' || ch > '9') && ch != '-') ch = getchar();
    if (ch == '-') f = -1, ch = getchar();
    while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
    return x * f;
}

const int S = 1e6;

vector<int> getFac(int x) {
    vector<int> f;
    for (int i = 1, t = sqrt(x); i <= t; i++){
        if( x % i ) continue;
        f.push_back(i);
        if( i * i != x ) f.push_back(x/i);
    }
    return f;
}

void solve() {
    int n = read(), res = 0;
    map<int, int> cnt;
    for (int i = 1, x; i <= n; i++)
        x = read(), cnt[x]++;
    for (auto [x, y]: cnt) {
        res += y * (y - 1) * (y - 2);
        if (x >= S) {
            for( int i = 2 ; i * x <= cnt.rbegin()->first ; i ++ )
                if( x % i == 0 && cnt.count(x/i) && cnt.count(x*i) )
                    res += cnt[x/i] * cnt[x*i] * y;
        } else {
            auto f = getFac(x);
            for( auto i : f ){
                if( i == 1 ) continue;
                if( i * x > cnt.rbegin()->first) continue;
                if( cnt.count(x/i) && cnt.count(x*i) )
                    res += cnt[x/i] * cnt[x*i] * y;
            }
        }
    }
    cout << res << "\n";
    return;
}

int32_t main() {
    for (int t = read(); t; t--)
        solve();
    return 0;
}
posted @ 2023-04-26 20:05  PHarr  阅读(61)  评论(0编辑  收藏  举报