阵列信号处理中协方差矩阵为什么重要

阵列信号处理中协方差矩阵为什么重要

如下图所示为阵列探测示意图,其中目标到达角定义为信号入射方向与阵列法线之间的夹角,在窄带(点信源)和远场(平面波)的假设下,同一信号到达不同阵元存在波程差,这个波程差导致了各接收阵元的相位差,该相位差组成阵列的导向矢量和阵列流型矩阵。

图1 阵列信号探测示意图

设阵元数为\(M\),信源数为\(N\),第n个信源的到达角为\(\theta_n\)则其对应的导向矢量可以表示为\(\boldsymbol{a}(\theta_n)=[1,e^{-i2\pi d{\rm sin}(\theta_n)/\lambda},...,e^{-i2\pi (M-1)d{\rm sin}(\theta_N)/\lambda}]^T\),所有信源组成的阵列流型矩阵可以表示为

\[\begin{equation} \begin{aligned} \boldsymbol{A}(\boldsymbol{\theta})&=[\boldsymbol{a}(\theta_0),...,\boldsymbol{a}(\theta_p),...,\boldsymbol{a}(\theta_{N-1})]\\ &= \begin{bmatrix} &1,&1,&...,&1\\ &e^{-i2\pi d{\rm sin}(\theta_0)/\lambda},&e^{-i2\pi d{\rm sin}(\theta_1)/\lambda},&...,&e^{-i2\pi d{\rm sin}(\theta_{N-1})/\lambda}\\ &\vdots,&\vdots,&\vdots,&\vdots\\ &e^{-i2\pi (M-1)d{\rm sin}(\theta_0)/\lambda},&e^{-i2\pi (M-1)d{\rm sin}(\theta_1)/\lambda},&...,&e^{-i2\pi (M-1)d{\rm sin}(\theta_{N-1})/\lambda} \end{bmatrix} \end{aligned} \end{equation}\tag{1} \]

从(1)可以看出,\(\boldsymbol{A}(\boldsymbol{\theta})\)是一个范德蒙矩阵,且当\(M>=N\),即信源数小于阵列维数时,阵列流型矢量是非奇异的。

所以阵列信号的接收模型可以表示为

\[\boldsymbol{x}(t)=\boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t)+\boldsymbol{n}(t)\tag{2} \]

其中\(\boldsymbol{s}(t)=[s_0(t),...,s_{N-1}(t)]^T\)\(\boldsymbol{n}(t)=[n_0(t),...,n_{M-1}(t)]^T\)。计算阵列接收信号的协方差矩阵如下

\[\begin{equation} \begin{aligned} \boldsymbol{R}_x&={\rm E}[\boldsymbol{x}(t)\boldsymbol{x}^H(t)]=\boldsymbol{A}{\rm E}[\boldsymbol{s}(t)\boldsymbol{s}^H(t)]\boldsymbol{A}^H+{\rm E}[\boldsymbol{n}(t)\boldsymbol{n}^H(t)]=\boldsymbol{A}\boldsymbol{R}_s \boldsymbol{A}^H+\sigma^2 \boldsymbol{I} \end{aligned} \end{equation}\tag{3} \]

对协方差矩阵进行奇异值分解可以得到

\[\boldsymbol{R}_x=\boldsymbol{A}\boldsymbol{R}_s \boldsymbol{A}^H+\sigma^2 \boldsymbol{I}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{U}^H=[\boldsymbol{U}_s,\boldsymbol{U}_n]\begin{bmatrix}\boldsymbol{\Sigma}_s,\boldsymbol{O}\\ \boldsymbol{O},\boldsymbol{\Sigma}_n\end{bmatrix} \begin{bmatrix}\boldsymbol{U}_s^H\\\boldsymbol{U}_n^H\end{bmatrix}\tag{4} \]

其中\(\boldsymbol{\Sigma}_s={\rm diag}(\sigma_1^2+\sigma^2,...,\sigma_{N}^2+\sigma^2)={\rm diag}(\lambda_1,...,\lambda_N)\)\(\boldsymbol{\Sigma}_n=\sigma^2 \boldsymbol{I}\),令\(\boldsymbol{U}=[\boldsymbol{u}_1,...,\boldsymbol{u}_N, |\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M]\),则\(\boldsymbol{U}_s=[\boldsymbol{u}_1,...,\boldsymbol{u}_N]\)\(\boldsymbol{U}_n=[\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M]\)。根据奇异值分解的性质可知,\(\boldsymbol{U}\)是一个酉矩阵,\(\lbrace\boldsymbol{u}_1,...,\boldsymbol{u}_M\rbrace\)构成了一组标准正交基,即\(\boldsymbol{u}_i^H\boldsymbol{u}_i=1\)\(\boldsymbol{u}_i^H\boldsymbol{u}_j=0,i\neq j\),基于此,下面来证明一些结果:

(1) \(\boldsymbol{U}_s^H \boldsymbol{U}_s=\boldsymbol{I},\boldsymbol{U}_n^H \boldsymbol{U}_n=\boldsymbol{I}\)

证明:

\[\begin{equation} \begin{aligned} \boldsymbol{U}_s^H \boldsymbol{U}_s&=\begin{bmatrix}\boldsymbol{u}_1^H\\ \vdots\\ \boldsymbol{u}_N^H\end{bmatrix} [\boldsymbol{u}_1,...,\boldsymbol{u}_N]=\begin{bmatrix}&\boldsymbol{u}_1^H \boldsymbol{u}_1,&...,&\boldsymbol{u}_1^H \boldsymbol{u}_N \\ &\vdots,&...,&\vdots\\ &\boldsymbol{u}_N^H \boldsymbol{u}_1,&...,&\boldsymbol{u}_N^H \boldsymbol{u}_N\end{bmatrix}=\boldsymbol{I}\\ \boldsymbol{U}_n^H \boldsymbol{U}_n&=\begin{bmatrix}\boldsymbol{u}_{N+1}^H\\ \vdots\\ \boldsymbol{u}_M^H\end{bmatrix} [\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M]=\begin{bmatrix}&\boldsymbol{u}_{N+1}^H \boldsymbol{u}_{N+1},&...,&\boldsymbol{u}_{N+1}^H \boldsymbol{u}_M \\ &\vdots,&...,&\vdots\\ &\boldsymbol{u}_M^H \boldsymbol{u}_{N+1},&...,&\boldsymbol{u}_M^H \boldsymbol{u}_M\end{bmatrix}=\boldsymbol{I}\\ \end{aligned} \end{equation} \]

(2) \(\boldsymbol{U}_s \boldsymbol{U}_s^H+\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{I}\)

证明:

\[\begin{equation} \begin{aligned} \boldsymbol{U}_s \boldsymbol{U}_s^H&=[\boldsymbol{u}_1,...,\boldsymbol{u}_N]\begin{bmatrix}\boldsymbol{u}_1^H\\ \vdots\\ \boldsymbol{u}_N^H\end{bmatrix}=\sum_{i=1}^N \boldsymbol{u}_i \boldsymbol{u}_i^H\\ \boldsymbol{U}_n \boldsymbol{U}_n^H&=[\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M]\begin{bmatrix}\boldsymbol{u}_{N+1}^H\\ \vdots\\ \boldsymbol{u}_M^H\end{bmatrix}=\sum_{i=N+1}^M \boldsymbol{u}_i \boldsymbol{u}_i^H\\ &\boldsymbol{U}_s \boldsymbol{U}_s^H+\boldsymbol{U}_n \boldsymbol{U}_n^H=\sum_{i=1}^M \boldsymbol{u}_i \boldsymbol{u}_i^H \end{aligned} \end{equation} \]

\(\boldsymbol{u}_i \boldsymbol{u}_i^H=\boldsymbol{C},C_{i,j}=\begin{cases}0,i\neq j\\ 1,i=j\end{cases}\),所以,显然有\(\boldsymbol{U}_s \boldsymbol{U}_s^H+\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{I}\)

(3)\(\boldsymbol{U}_s \boldsymbol{U}_s^H=\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H\)\(\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{U}_n (\boldsymbol{U}_n^H \boldsymbol{U}_n)^{-1}\boldsymbol{U}_n^H=\boldsymbol{I}-\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H\)

证明:由证明1可得\(\boldsymbol{U}_s^H \boldsymbol{U}_s=\boldsymbol{I},\boldsymbol{U}_n^H \boldsymbol{U}_n=\boldsymbol{I}\),所以\(\boldsymbol{U}_s \boldsymbol{U}_s^H=\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H\)\(\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{U}_n (\boldsymbol{U}_n^H \boldsymbol{U}_n)^{-1}\boldsymbol{U}_n^H\)显然是成立的,再由证明结果2,可以得到\(\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{U}_n (\boldsymbol{U}_n^H \boldsymbol{U}_n)^{-1}\boldsymbol{U}_n^H=\boldsymbol{I}-\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H\)也是成立的。

由上面的证明结果(3)可知,\(\boldsymbol{U}_s \boldsymbol{U}_s^H\)\(\boldsymbol{U}_n \boldsymbol{U}_n^H\)分别表示在s空间和n空间上的投影算子,所以\(\boldsymbol{U}_s \boldsymbol{U}_s^H X\)\(\boldsymbol{U}_n\boldsymbol{U}_n^H X\)分别表示将信号\(\boldsymbol{X}\)往s空间和n空间上进行投影,基于这个性质可以做很多事情。

(4)可以写成

\[\boldsymbol{R}_x=[\boldsymbol{U}_s,\boldsymbol{U}_n]\begin{bmatrix}\boldsymbol{\Sigma}_s,\boldsymbol{O}\\ \boldsymbol{O},\boldsymbol{\Sigma}_n\end{bmatrix} \begin{bmatrix}\boldsymbol{U}_s^H\\\boldsymbol{U}_n^H\end{bmatrix}=\boldsymbol{U}_s\boldsymbol{\Sigma}_s\boldsymbol{U}_s^H+\boldsymbol{U}_n\boldsymbol{\Sigma}_n\boldsymbol{U}_n^H=\sum_{i=1}^N \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^H+\sum_{i=N+1}^M \sigma^2 \boldsymbol{u}_i \boldsymbol{u}_i^H\tag{5} \]

\(\boldsymbol{R}_x\)求逆可以得到

\[\boldsymbol{R}_x^{-1}=\sum_{i=1}^N \frac{1}{\lambda_1} \boldsymbol{u}_i \boldsymbol{u}_i^H+\sum_{i=N+1}^M \frac{1}{\sigma^2} \boldsymbol{u}_i \boldsymbol{u}_i^H\tag{6} \]

现在考虑杂波抑制前的场景,此时信号中的直达波和多径杂波信号远远强于目标信号和噪声信号,所以上述s空间即为杂波空间,n空间即为目标和噪声空间。由于\(\lambda_1,...,\lambda_N \gg \sigma^2\),所以可以对(6)进行如下近似

\[\boldsymbol{R}_x^{-1}\approx \sum_{i=N+1}^M \frac{1}{\sigma^2} \boldsymbol{u}_i\boldsymbol{u}_i^H=\frac{1}{\sigma^2}\boldsymbol{U}_n\boldsymbol{U}_n^H\tag{7} \]

结合上面证明(3)的结论可知,此时\(\boldsymbol{R}_x^{-1}\)等效于n空间的投影算子。所以利用\(\boldsymbol{R}_x^{-1}\)可以将原始信号往能量较弱的信号成分构成的子空间进行投影,可以较好地实现信号分离,正是有这样的性质,在很多空域处理算法中经常能看到\(\boldsymbol{R}_x^{-1}\)的身影。所以\(\boldsymbol{R}_x\)在空域信号处理中具有举足轻重的地位。


参考文献

[1]H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Process. Mag., vol. 13, no. 4, pp. 67–94, 1996.

[2]Wan X, Yi J, Zhao Z, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70-85.

posted @ 2021-10-25 14:53  平和少年  阅读(179)  评论(0编辑  收藏  举报